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The Lustre High 
Performance Parallel 
File System

Introduction

Ever since the precursor to Lustre® (known as the Object-
Based Filesystem, or ODBFS) was developed at Carnegie 
Mellon University in 1999, Lustre has been at the heart of high 
performance computing, providing the necessary throughput 
and scalability to many of the fastest supercomputers in the 
world. Lustre has experienced a number of changes and, 
despite the code being open source, the ownership has 
changed hands a number of times. From the original company 
started by Dr. Peter Braam (Cluster File Systems, or CFS), 
which was acquired by Sun Microsystems in 2008—which was 
in turn acquired by Oracle in 2010—to the acquisition of the 
Lustre assets by Xyratex in 2013, the open source community 
has supported the proliferation and acceptance of Lustre. 

In 2011, industry trade groups like OpenSFS1,  together with 
its European sister organization, EOFS2, took a leading role 
in the continued development of Lustre, using member fees 
and donations to drive the evolution of specific projects, along 
with those sponsored by users3 such as Oak Ridge National 
Laboratory, Lawrence Livermore National Laboratory and the 
French Atomic Energy Commission (CEA), to mention a few.

Today, in 2014, the Lustre community is stronger than ever, 
and seven of the top 10 high performance computing (HPC) 
systems on the international Top 5004  list (as well as 75+ of 
the top 100) are running the Lustre high performance parallel 
file system.

It is important to note that this paper is not intended as a 
training or operations manual, or even as a technical deep 
dive into Lustre internals, but rather as an introduction to the 
inner workings of the file system.
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MDS (METADATA SERVER)
Responsible for managing all the metadata operations of the entire file system. Usually set up as a single pair of nodes 

in an active/passive failover mode with shared storage. For Lustre 2.4 and beyond, this can be extended to multiple 
pairs of active/active metadata servers (distributed namespace servers, or DNE).

MDT (METADATA TARGET)
The storage component where all metadata, for all files, is stored. Usually a single RAID10 array for maximum 

redundancy.

OST (OBJECT STORAGE TARGET)                  
Usually a RAID 5 or RAID 6 array used to store the actual data. The OSTs are a LUN specifically formatted for storing 

Lustre object data.

OSS (OBJECT STORAGE SERVER)                             
Nodes responsible for handling I/O data transfer for the OSTs. A single OSS can manage multiple OSTs and is usually 

configured on active/active failover pairs with shared drives for 
dynamic redundancy

LNET
The Lustre network layer is responsible for abstracting drives and physical components connecting the different parts 

of the cluster to the file system (see below).

LUSTRE CLIENT                       
The Lustre client is usually a compute node with a Lustre client installed allowing it to communicate with the file 

system. The client can be directly attached to the file system, or it can work through a LNET router.

LNET ROUTER                            
A node used to do network fabric or address range translation between directly attached clients and remote, network-

connected client compute and workstation resources. Often used to let several different compute clusters talk to a 
single shared file system.

Lustre Nomenclature 

Lustre contains a large number of moving parts, and reviewing all of them is not possible within the confines of this paper. 
However, some of the main components include:
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Lustre Features

File system size

Number of files

Single file size

Aggregate performance

No. of clients

Theoretical 
Limits

512 PB

4 billion per MDT*

2.5 PB

7 TB/s

>100,000

In Production 
June 20144

55 PB

Approx. 2 billion

100 TB

1.1 TB/s

Approx. 50,000

Lustre Features 

Today, Lustre is based entirely on Linux and is using kernel-
based server modules to deliver the expected performance. 
Lustre can support many types of clients and runs on almost 
any modern hardware. Scalability is one of the most important 
features of Lustre and can be used to create a single 
namespace of what appears to be almost limitless capacity. 

However, while the general Lustre community is still far 
from reaching maximum configurations, the gap is rapidly 
decreasing for Lustre version 1.x compared to some of the 
largest supercomputer wins just recently announced. For 
example, the German Climate Computing Centre in Hamburg, 
called DKRZ5,  will begin installation of one of the world’s 
largest Lustre installations beginning in 2015, and this site 
requires the use of over 4B files, which is above the current 
theoretical limit of Lustre version 1.x. Even though Lustre 
version 1.x may seem limitless, actual deployment practice 
and customer demand in the field are significantly outpacing 
aspects of the Lustre version 1.x use model, as will be 
described further below.

Support multiple networks
IB, X-GigE

(legacy - ELAN and MyriNet)

5 PRNewswire, June 26, 2014, Bull and Xyratex, a Seagate Company, Announce Reseller Partner Agreement and Major Design Win at DKRZ, http://www.prnewswire.com/news-
releases/bull-and-xyratex-a-seagate-company-announce-reseller-partner-agreement-and-major-design-win-at-dkrz-264694861.html”
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A file, a directory or the entire file system can be set to 
handle distribution using several parameters:

•	 	Stripe size – The specific size of an object (a file usually 
consists of a number of stripes). The stripe size is usually 
set to 1 MB as this corresponds to the default RPC size in 
Lustre.

•	 Stripe count – Determines how many OSTs are to be used 
for a single file. The default is 1, but it can be set arbitrarily.

•	 Stripe index – Where to put the initial object of a file. This 
is usually set to MDS discretion. This allows the MDS to 
place files on OSTs with more capacity than others to 
maintain a more balanced system.

The Big Idea 

While separating metadata and content on different systems 
is not unique, the design Lustre uses to do this has proven 
highly efficient and reliable. 

The separation of metadata operations from actual data I/O 
operations allows the fundamental Lustre file architecture to 
grow to almost limitless theoretical capacity and performance. 
In the near term, however, practical constraints due to 
implementation are usually seen in resulting metadata 
performance limits, such as file creates/deletes and stats. 

The original design with a single active/passive failover 
capable metadata server has been criticized by some as 
a weak point of Lustre—a feature that will limit its future 
usefulness. However, this is addressed in Lustre 2.4 and 
beyond (see below). By using discrete arrays as object 
storage targets (OSTs), Lustre is also capable of expanding 
the file system capacity and performance by adding more 
OSTs to an existing solution. Furthermore, this can be done 
online, and when done correctly as per industry best practice, 
will not incur any downtime. In addition, Lustre supports 
a number of extensions such as LNET routers and Lustre-
compatible applications for sharing the file system over NFS 
or CIFS.

How Lustre Works 

The concept of Lustre is actually quite simple. When a client 
requests to write a file to the file system, it contacts the MDS 
with a write request. The MDS checks the user authentication 
and the intended location of the file. Depending on the 
directory settings or file system settings, the MDS sends back 
a list of OSTs that the client can use to write the file. Once that 
reply is sent, the client interacts exclusively with the assigned 
OSTs without having to communicate with the MDS. This is 
true for any file regardless of size, whether it’s a few bytes or a 
few terabytes. And as this communication (if using InfiniBand) 
will be done exclusively over Remote Direct Memory Access 
(RDMA), the performance is exceptional and the latency is 
minimal (see below).

The actual distribution is defined by the specific striping 
settings of a file, directory or file system. If the specific file 
write command does not have a pre-defined set of stripe 
settings, it will inherit the settings of the directory or file 
system to which it is written. 

While Lustre is fully POSIX compliant (with the sole 
exception of updates to atime), it handles all transactions 
atomically. This means that all I/O requests are executed in 
sequence without interruption to prevent conflicts. No data 
is being cached outside the clients, and a file read or write 
acknowledgement is required to release the file lock. 

To achieve parallelism, Lustre uses a distributed lock manager 
to handle the thousands of supported clients trying to access 
the file system. To clarify, each component in the Lustre 
file system runs an instance of the Lustre Distributed Lock 
Manager (LDLM). The LDLM provides a means to ensure that 
data is updated in a consistent fashion across multiple OSS 
and OST nodes.
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Data Flow 

The mechanism employed by Lustre to manage a write or read operation can be simplified using the following examples (note that 
RDMA assumes InfiniBand-based networks):

Write: 

1.	Client “asks” the MDS for permission to write a file.

2.	MDS checks access rights, file properties, etc., and returns 
a list of OSTs to use.

3.	The clients communicate directly with each OST, which 
writes the data in parallel until done (this communication 
continues until the entire file is written regardless of size, 
from KBs to TBs), and does not involve the MDS further.

Read:

1.	Client “asks” the MDS for permission to read a file.

2.	MDS checks access rights and file location, and returns 
a list of OSTs where the different stripes of the file are 
located.

3.	The clients communicate directly with each OST, which 
reads the data in parallel until done reading the parts of the 
file the clients need.

4.	Once the client is finished, it sends a single “done” to the 
metadata server to make the file accessible to other clients.
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As you would want to separate the data-intensive Message Passing Interface (MPI) traffic between different compute solutions, 
a single, large interconnect linking all significant resources at a site is not ideal. Lustre solves this problem by having compute 
nodes sitting between the different interconnect fabrics, essentially acting as a client to each fabric. The LNET routing capabilities 
then provide an efficient (near wire speed) protocol to permit bridging between the networks, allowing a remote set of non-Lustre 
clients to mount the Lustre file system. In addition to network connectivity, file access and underlying lock management, the LNET 
network abstraction layer also allows the communication to undergo fabric translation, such as from Ethernet to InfiniBand.

In addition to linking Ethernet and InfiniBand-based interconnect fabrics, this methodology is also used by supercomputer 
systems such as the Cray XC series, in which the internal Aries interconnect needs service nodes (in effect, Lustre routers) to 
connect to an external IB-based storage fabric. An excellent example of this is the UK National High Performance Computing 
Facility system called “Archer,” which was recently installed at the HPCC in Edinburgh6.

6 http://www.archer.ac.uk/training/courses/craytools/pdf/architecture-overview.pdf

Networking Concepts 

One of the unique features of Lustre is the abstraction of the 
network layer, which is done using a feature called LNET. In 
addition to the obvious network entities such as Ethernet (1, 
10, 40 GbE and beyond) and InfiniBand (SDR, DDR, QDR, 
FDR and beyond), it is also capable of supporting legacy 
fabrics such as Quadrics (ELAN) and MyriNet. In addition, it 
has been enhanced to handle specific compute fabrics such 
as Cray Gemini, Aries and Cascade. 

LNET is part of the Linux kernel space and allows for full 
RDMA (in the case of InfiniBand) throughput and zero copy 
communications. This means that for large streaming I/O, 
Lustre can initiate a multi OST read or write using a single 
Remote Procedure Call (RPC) that allows the client(s) to 
access data using pure RDMA, regardless of the amount of 
data being transmitted. This allows for extreme low-latency 
communication and extreme throughput.

LNET Routing 

The unique features of LNET also provide the means for 
some advanced networking features. One such feature is 
LNET routing. Many HPC sites have several different compute 
systems as well as auxiliary systems and workstations for 
visualization and data analysis. Some of these network-
connected resources use a separate file system for each, 
which leads users to manually or semi-automatically copy 
data between them. This not only introduces delays in 
moving large amounts of data, but also creates significant 
administrative overhead in file version control and managing 
duplicate files on multiple distributed systems. To counter this 
administrative challenge, some users prefer to have a single, 
large file system as a repository for all data in addition to the 
scratch properties usually indicating a Lustre file system in the 
first place; however, this requires all contributing resources at 
the site to connect as Lustre clients.

Caesar
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Although Lustre version 2 has been available since 2010, a 
majority of the systems currently running Lustre are still on 
the 1.8.x branch. The reasons for this are many, and vary from 
user to user. One of the main reasons, however, is a legacy 
perception of the stability of the Lustre code, which focused 
primarily on performance. Most development efforts up to 
Lustre version 1.8 were focused on stability to attain maximum 
performance, whereas the majority of the projects since then 
have focused on adding increased stability and robustness to 
attain even higher performance and data-capacity scale along 
with more enterprise features. 

While most of today’s research and academic users may not 
need, nor use, any of the new Lustre version 2.x features, 
leaders in government and the commercial technical 
computing industry are demanding better data management 
tools, reliability and serviceability. All of this means 
significantly improved solution robustness, flexibility and 
bottom-line usefulness or user productivity, not just the limited 
scope of “Lustre code” stability primarily for performance. 

Overall, with proven supercomputing industry success 
and an expanded universe of new users in oil and gas, life 
sciences, genomics, pharmacology, finance and Big Data 
analytics, Lustre must be absolutely stable, robust and highly 
scalable in performance and capacity, as well as support a 
rich set of improved tools and capabilities. The best of both 
worlds is coming together. Today, Lustre 2.x systems are 
being deployed in many data centers belonging to energy 
companies and climate and weather services, as well as within 
financial institutions.

The following are brief explanations of some of these new 
Lustre 2.x features.

Lustre Version 2 and 
Beyond

Lustre Changelogs

Monitoring changes in a Lustre 1.6/1.8 file system is highly 
resource-intensive and requires frequent disk scanning. As this 
is not feasible on a large, active system, a new mechanism to 
monitor changes was needed. 

Lustre 2.0 and beyond (Lustre 2.6 is the most recent version 
as of this writing) contains a new kernel ring buffer called 
Lustre changelogs. The changelogs feature records events 
that change the file system namespace or file metadata. 
Depending on the intended use (Hierarchical Storage 
Management [HSM], file pruning, system rebalancing, quotas, 
etc.), specific changes such as file creation, deletion, renaming 
and attribute changes are recorded with the target and parent 
file identifiers (FIDs), the name of the target and a timestamp.

The data can then be used for a variety of purposes:

•	 Capture recent changes to feed into the policy engine of 
an archiving system or HSM backend

•	 Use changelog entries to exactly replicate changes in a 
file system mirror

•	 	Set up “watch scripts” that take action on certain events 
or directories

•	 Maintain a rough audit trail (file/directory changes with 
timestamps but no user information) 

To manage such events, several tools are currently available. 
Perhaps the prime tool currently available is RobinHood 
(developed by CEA as the policy engine for HSM), which 
extracts desired data and stores it in one or more external 
MySQL databases. The databases can then be used to 
generate the necessary or desired actions on files and data.
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Data Layout Policies 

While the use of extended attributes allowed Lustre to 
distribute a single file over up to 160 OSTs to provide a single 
shared file with maximum bandwidth, this has been shown to 
be an ineffective approach as requirements increase. Moving 
to an FID bitmap, and changing the distribution coding, a 
single file can now be distributed over up to 2,000 OSTs. This 
is usually referred to as very wide striping.

That said, most users keep the file distribution (i.e., striping) to 
a minimum and prefer to achieve parallelism by letting many 
different applications or write threads do I/O to a single OST 
and allow the MDS to distribute the load to all available OSTs.

Size on MDS

One issue that emerges with a parallel file system capable of 
delivering a single namespace of 100+ PBs is the number of 
files and directories it needs to handle. Using tools such as 
“ls –l” and “df –h” incurs a significant performance impact on 
large systems, as each single object needs to be scanned. In 
Lustre versions earlier than 2.0, listing the files in a directory, 
getting the size of files and directories, and determining 
how much of the file system is being used required doing a 
“glimpse lookup”—in other words, finding the last object of 
a file and calculating the approximate size of each file based 
on the object size and extent of the objects. This requires the 
use of Lustre-specific pre-fix “lfs” that implements the above-
mentioned shortcuts. 

Obviously, this does not scale well, and best practices have 
been recommended (by still using the “lfs” pre-fix) to read 
sizes, etc., from the MDS rather than scan all the OSTs. 

The Size on MDS (SOM) feature keeps a persistent database 
of Open Files that are indexed by FIDs. Clients request Size of 
file from MDS not by communicating to every OSS, but rather 
by single RPC to the MDS. 

0:{ost#, objid}

1:{ost#, objid}

-

-

128:{ost#, objid}

LOV_PATTERN_RAID0

FID

OST BITMAP

LOV_PATTERN_BITMAP
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4 MB I/O  

While the initial design of Lustre was very forward thinking, a few early decisions have had a significant impact on performance 
today. One such decision was to hardcode Lustre network transfers to 1 MB RPCs and cap network buffers to the same level. 
While this made perfect sense with the disk drives of the time, modern drives are different, and I/O throughput peaks at around 

Network Request Scheduler (NRS)  

Lustre was originally created for a specific purpose: large streaming I/Os typical of supercomputers in U.S. national labs at the 
turn of the century. However, today’s systems often require a large number of small files to be written and read as part of their 
execution. When studying individual client I/O behavior in large systems, taken individually, I/O often looks quite random. For a 
Lustre file system, random I/O is very detrimental with regards to performance, and steps are often taken to minimize random 
access I/O. However, when studying a larger system as a whole, these random I/O calls can form patterns reminiscent of 
streaming I/O behavior. The purpose of the network request scheduler is to re-order collective I/O (from many clients writing to a 
single file) into an effective, sequential stream (through the Portal RPC, or PTLRPC, service) while maintaining consistency with 
read-write ordering semantics and locking. 

4 MB for both reads and writes using 
the original settings. The solution 
to this problem is to allow multiple 
1 MB chunks to travel from client 
to server as part of a single, client-
based read or write RPC. Rather 
than implementing fundamental 
changes to enable I/O buffers larger 
than 1 MB, Lustre can conduct 
multiple transfers as part of the RPC, 
before the OST backend initiates 
I/O. Because the OSS read cache 
feature provides read-only caching 
of data on every OSS, the size of the 
network transfer from server to client, 
for read operations, is less critical. 

The NRS optimizes throughput by implementing several basic policies, such as fair client I/O scheduling and prioritized clients.

The NRS feature was introduced in Lustre 2.4 and works transparently by monitoring the I/O of the file system.

Read

T
hr

o
ug

hp
ut

 M
B

/s

Write

I/O size (bytes)
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Distributed Namespace (DNE) Servers

As mentioned earlier, the perceived lack of metadata performance is often considered a major drawback of Lustre. To solve this 
problem, Lustre 2.4 shipped with enhanced metadata functionality where it is not possible to add multiple metadata namespace 
servers in an active/active design. Not long ago, the concept of “clustered metadata servers” was intended to offer more features 
than the current implementation; however, this has proven to be too difficult to develop, and that project has evolved into the 
current concept of Distributed Namespace (DNE) servers. 

Each DNE server “owns” part of the logical file tree, with the MDT0 handling the root level and each DNE handling a piece of the 
entire namespace—for example, /mnt/lustre/a and /mnt/lustre/b, where a and b are physically separate parts of the file system. 
While the most obvious benefit of this approach is the ability to scale I/O to the system supporting in excess of 100,000 file 
creates, there are other, similarly important use cases, such as separating different applications’ I/O loads to allow a well-behaved 
I/O to be unaffected by another application’s disruptive I/O pattern.

Hierarchical Storage Management (HSM)

Lustre doesn’t perform backups; currently, backups are performed either manually or using a brute force approach with one or 
more data movers bridging the area between Lustre and a secondary file system. By using Lustre-aware tools such as Lustre 
rsync or Mutil7, it is possible to keep two or more directories in sync, thereby creating an effective backup copy. However, this 
approach lacks automation and flexibility, and more importantly, does not offer any intelligent data management features.

This has long been recognized by the French Atomic Energy Commission (CEA), which developed a full HSM solution for internal 
use that is now part of the Lustre 2.5 source tree.

7 http://sourceforge.net/projects/mutil/files/

Support multiple networks
IB, X-GigE
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The HSM solution consists of three main functional units:

•	 The Policy Engine – Open source tool called RobinHood8. 
RobinHood uses the changelogs to create a database 
with the parameters used to define a policy, such as last 
touched, directory location, file size, owner, etc.

•	 Coordinator – Effectively adds a bit to the metadata 
to define it as “moved” so that a read request is aware 
that the file must be restored to the storage before the 
process can begin. The coordinator is also responsible for 
managing the objects that can be removed from the OSTs 
once they’ve been fully migrated.

•	 CopyTool – The system can support one or more copytools 
(each running on its own data mover client) that are 
responsible for copying out or restoring the object to an 
HSM backend.

The HSM backend is usually a complete storage system in 
its own right. It can be either disk-based or tape-based, or a 
combination. Today, there are several options from which to 
choose. The original design uses an open source tape-based 
backend called High Performance Storage System9 (HPSS) 
originally developed by IBM.

In addition to the HPSS-based CopyTool, a POSIX copytool 
allows connectivity to several other types of HSM backend, 
such as:

•	 TSM – Tivoli Storage Manager

•	 SAM/QFS – Linux port of the old Sun Microsystem HSM 
solution

•	 TAS – Tiered Adaptive Storage – Cray HSM solution based 
on the Versity implementation of SAM-QFS10 

•	 DMF – SGI’s storage tier virtualization solution11 

8 https://github.com/cea-hpc/robinhood/wiki

9 http://www.hpss-collaboration.org

10 http://www.versity.com / http://www.cray.com/Products/Storage/Tiered-Adaptive-Storage.aspx

11 https://www.sgi.com/products/storage/idm/dmf.html
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Data Integrity

Silent data corruption and bit rot have long been major issues with large file systems. While Lustre does employ check summing 
when sending data over the wire, the data path within each OSS is not protected in a similar way. There are currently several 
projects under way to add end-to-end data integrity to Lustre. One of the more promising projects is T10-PI (Protection 
Information, aka T10-DIF)—which, when combined with modern compute hardware, can perform the necessary calculations in 
hardware and in essence perform the computations at wire speed. While not fully available today, at least one major vendor is 
developing what’s called T10-PI type 2, which entails check summing from the OSS to the disk drive. There is currently a project 
on the Lustre roadmap to push this all the way to the client.

Lustre Futures

As mentioned above, Lustre is one of the most successful open source projects; development of new features is carried out 
by close to 70 developers representing some 20 companies and organizations. However, the complexity of maintaining a large 
body of source code and ensuring support for newer kernels and Linux distributions while still adding new functionality without 
introducing disruptive code regression artifacts is a tall order indeed. That said, the list of proposed feature developments is long 
and covers a number of very interesting features, including enhanced support for small files (including “Data on MDS,” or storing 
small data directly on the MDT when this can be accomplished within a single RPC), enhancements in DNE (such as “striped 
directories” and “async commits”), modernizing Kerberos support (for wide area Lustre implementations, among others) and 
improved Lustre file systems check (LFSCK), to mention a few. 
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Lustre has been a mature and stable file system for a number 
of years, but its requirements and associated use model are 
changing. Simplicity of management is now an often stated 
requirement in Request for Proposals (RFPs), and customer 
requirement discussions are occurring specifically around 
the need for a fully functional and scalable management 
graphical-user interface (in addition to the ubiquitous 
command line interface). Another trend in Lustre adoption 
and proliferation is that Lustre is no longer only used for 
the original purpose of constituting a scratch file system 
for HPC computations. Today, Lustre is increasingly used 
as a file system for home directories as well as for project 
space. This means the requirements for reliability and data 
integrity increase every year, along with expansion of the 
compatibility matrix for network- and gateway-connected 
compute resources. One might think that these requirements 
are opposite to extreme performance, but “best of both world” 
solutions are under way that work for both types 
of requirements. 

Summary and Discussion

Today, among leading data-intensive commercial entities 
and institutions that previously depended on enterprise file 
systems, there is a clear trend toward moving to Lustre. This 
includes not only weather and climatology institutions such 
as DED and DKRZ in Germany, ECMWF and Met Office in the 
UK and the South African Weather Service (SAWS), but also 
companies in the financial and energy sectors. The proven 
stability at sites such as NCSA Blue Waters in the U.S. and 
CEA in France has done much to prove the reputation that 
Lustre serves much more than just performance.

It is interesting to see storage companies such as Seagate, 
EMC and NetApp participating in the development efforts 
through OpenSFS12, in addition to compute vendors such as 
Cray, Fujitsu and SGI augmenting the national labs and other 
high-profile end users. The continued support (both financially 
and through in-house development) is not only critical to 
the future of Lustre, but also forms the basis of the proven 
success of an open source, high performance parallel file 
system. The future is bright indeed.

12 http://opensfs.org/participants/
Take the Next Step
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