
An introduction to the inner
workings of the world’s most
scalable and popular open
source HPC file system

Torben Kling Petersen, PhD

Technology Paper

Inside The Lustre File
System

Inside The Lustre File System

1 Open Scalable File Systems – http://opensfs.org 3 http://top500.org
2

European Open File Systems – http://www.eofs.org 4 This is a summary of characteristics for the largest supercomputer site.
 For more information see http://top500.org

The Lustre High
Performance Parallel
File System

Introduction

Ever since the precursor to Lustre® (known as the Object-
Based Filesystem, or ODBFS) was developed at Carnegie
Mellon University in 1999, Lustre has been at the heart of high
performance computing, providing the necessary throughput
and scalability to many of the fastest supercomputers in the
world. Lustre has experienced a number of changes and,
despite the code being open source, the ownership has
changed hands a number of times. From the original company
started by Dr. Peter Braam (Cluster File Systems, or CFS),
which was acquired by Sun Microsystems in 2008—which was
in turn acquired by Oracle in 2010—to the acquisition of the
Lustre assets by Xyratex in 2013, the open source community
has supported the proliferation and acceptance of Lustre.

In 2011, industry trade groups like OpenSFS1, together with
its European sister organization, EOFS2, took a leading role
in the continued development of Lustre, using member fees
and donations to drive the evolution of specific projects, along
with those sponsored by users3 such as Oak Ridge National
Laboratory, Lawrence Livermore National Laboratory and the
French Atomic Energy Commission (CEA), to mention a few.

Today, in 2014, the Lustre community is stronger than ever,
and seven of the top 10 high performance computing (HPC)
systems on the international Top 5004 list (as well as 75+ of
the top 100) are running the Lustre high performance parallel
file system.

It is important to note that this paper is not intended as a
training or operations manual, or even as a technical deep
dive into Lustre internals, but rather as an introduction to the
inner workings of the file system.

Inside The Lustre File System

MDS (METADATA SERVER)
Responsible for managing all the metadata operations of the entire file system. Usually set up as a single pair of nodes

in an active/passive failover mode with shared storage. For Lustre 2.4 and beyond, this can be extended to multiple
pairs of active/active metadata servers (distributed namespace servers, or DNE).

MDT (METADATA TARGET)
The storage component where all metadata, for all files, is stored. Usually a single RAID10 array for maximum

redundancy.

OST (OBJECT STORAGE TARGET)
Usually a RAID 5 or RAID 6 array used to store the actual data. The OSTs are a LUN specifically formatted for storing

Lustre object data.

OSS (OBJECT STORAGE SERVER)
Nodes responsible for handling I/O data transfer for the OSTs. A single OSS can manage multiple OSTs and is usually

configured on active/active failover pairs with shared drives for
dynamic redundancy

LNET
The Lustre network layer is responsible for abstracting drives and physical components connecting the different parts

of the cluster to the file system (see below).

LUSTRE CLIENT
The Lustre client is usually a compute node with a Lustre client installed allowing it to communicate with the file

system. The client can be directly attached to the file system, or it can work through a LNET router.

LNET ROUTER
A node used to do network fabric or address range translation between directly attached clients and remote, network-

connected client compute and workstation resources. Often used to let several different compute clusters talk to a
single shared file system.

Lustre Nomenclature

Lustre contains a large number of moving parts, and reviewing all of them is not possible within the confines of this paper.
However, some of the main components include:

Inside The Lustre File System

Lustre Features

File system size

Number of files

Single file size

Aggregate performance

No. of clients

Theoretical
Limits

512 PB

4 billion per MDT*

2.5 PB

7 TB/s

>100,000

In Production
June 20144

55 PB

Approx. 2 billion

100 TB

1.1 TB/s

Approx. 50,000

Lustre Features

Today, Lustre is based entirely on Linux and is using kernel-
based server modules to deliver the expected performance.
Lustre can support many types of clients and runs on almost
any modern hardware. Scalability is one of the most important
features of Lustre and can be used to create a single
namespace of what appears to be almost limitless capacity.

However, while the general Lustre community is still far
from reaching maximum configurations, the gap is rapidly
decreasing for Lustre version 1.x compared to some of the
largest supercomputer wins just recently announced. For
example, the German Climate Computing Centre in Hamburg,
called DKRZ5, will begin installation of one of the world’s
largest Lustre installations beginning in 2015, and this site
requires the use of over 4B files, which is above the current
theoretical limit of Lustre version 1.x. Even though Lustre
version 1.x may seem limitless, actual deployment practice
and customer demand in the field are significantly outpacing
aspects of the Lustre version 1.x use model, as will be
described further below.

Support multiple networks
IB, X-GigE

(legacy - ELAN and MyriNet)

5 PRNewswire, June 26, 2014, Bull and Xyratex, a Seagate Company, Announce Reseller Partner Agreement and Major Design Win at DKRZ, http://www.prnewswire.com/news-
releases/bull-and-xyratex-a-seagate-company-announce-reseller-partner-agreement-and-major-design-win-at-dkrz-264694861.html”

Inside The Lustre File System

A file, a directory or the entire file system can be set to
handle distribution using several parameters:

•	 	Stripe size – The specific size of an object (a file usually
consists of a number of stripes). The stripe size is usually
set to 1 MB as this corresponds to the default RPC size in
Lustre.

•	 Stripe count – Determines how many OSTs are to be used
for a single file. The default is 1, but it can be set arbitrarily.

•	 Stripe index – Where to put the initial object of a file. This
is usually set to MDS discretion. This allows the MDS to
place files on OSTs with more capacity than others to
maintain a more balanced system.

The Big Idea

While separating metadata and content on different systems
is not unique, the design Lustre uses to do this has proven
highly efficient and reliable.

The separation of metadata operations from actual data I/O
operations allows the fundamental Lustre file architecture to
grow to almost limitless theoretical capacity and performance.
In the near term, however, practical constraints due to
implementation are usually seen in resulting metadata
performance limits, such as file creates/deletes and stats.

The original design with a single active/passive failover
capable metadata server has been criticized by some as
a weak point of Lustre—a feature that will limit its future
usefulness. However, this is addressed in Lustre 2.4 and
beyond (see below). By using discrete arrays as object
storage targets (OSTs), Lustre is also capable of expanding
the file system capacity and performance by adding more
OSTs to an existing solution. Furthermore, this can be done
online, and when done correctly as per industry best practice,
will not incur any downtime. In addition, Lustre supports
a number of extensions such as LNET routers and Lustre-
compatible applications for sharing the file system over NFS
or CIFS.

How Lustre Works

The concept of Lustre is actually quite simple. When a client
requests to write a file to the file system, it contacts the MDS
with a write request. The MDS checks the user authentication
and the intended location of the file. Depending on the
directory settings or file system settings, the MDS sends back
a list of OSTs that the client can use to write the file. Once that
reply is sent, the client interacts exclusively with the assigned
OSTs without having to communicate with the MDS. This is
true for any file regardless of size, whether it’s a few bytes or a
few terabytes. And as this communication (if using InfiniBand)
will be done exclusively over Remote Direct Memory Access
(RDMA), the performance is exceptional and the latency is
minimal (see below).

The actual distribution is defined by the specific striping
settings of a file, directory or file system. If the specific file
write command does not have a pre-defined set of stripe
settings, it will inherit the settings of the directory or file
system to which it is written.

While Lustre is fully POSIX compliant (with the sole
exception of updates to atime), it handles all transactions
atomically. This means that all I/O requests are executed in
sequence without interruption to prevent conflicts. No data
is being cached outside the clients, and a file read or write
acknowledgement is required to release the file lock.

To achieve parallelism, Lustre uses a distributed lock manager
to handle the thousands of supported clients trying to access
the file system. To clarify, each component in the Lustre
file system runs an instance of the Lustre Distributed Lock
Manager (LDLM). The LDLM provides a means to ensure that
data is updated in a consistent fashion across multiple OSS
and OST nodes.

Inside The Lustre File System

Data Flow

The mechanism employed by Lustre to manage a write or read operation can be simplified using the following examples (note that
RDMA assumes InfiniBand-based networks):

Write:

1.	Client “asks” the MDS for permission to write a file.

2.	MDS checks access rights, file properties, etc., and returns
a list of OSTs to use.

3.	The clients communicate directly with each OST, which
writes the data in parallel until done (this communication
continues until the entire file is written regardless of size,
from KBs to TBs), and does not involve the MDS further.

Read:

1.	Client “asks” the MDS for permission to read a file.

2.	MDS checks access rights and file location, and returns
a list of OSTs where the different stripes of the file are
located.

3.	The clients communicate directly with each OST, which
reads the data in parallel until done reading the parts of the
file the clients need.

4.	Once the client is finished, it sends a single “done” to the
metadata server to make the file accessible to other clients.

Inside The Lustre File System

As you would want to separate the data-intensive Message Passing Interface (MPI) traffic between different compute solutions,
a single, large interconnect linking all significant resources at a site is not ideal. Lustre solves this problem by having compute
nodes sitting between the different interconnect fabrics, essentially acting as a client to each fabric. The LNET routing capabilities
then provide an efficient (near wire speed) protocol to permit bridging between the networks, allowing a remote set of non-Lustre
clients to mount the Lustre file system. In addition to network connectivity, file access and underlying lock management, the LNET
network abstraction layer also allows the communication to undergo fabric translation, such as from Ethernet to InfiniBand.

In addition to linking Ethernet and InfiniBand-based interconnect fabrics, this methodology is also used by supercomputer
systems such as the Cray XC series, in which the internal Aries interconnect needs service nodes (in effect, Lustre routers) to
connect to an external IB-based storage fabric. An excellent example of this is the UK National High Performance Computing
Facility system called “Archer,” which was recently installed at the HPCC in Edinburgh6.

6 http://www.archer.ac.uk/training/courses/craytools/pdf/architecture-overview.pdf

Networking Concepts

One of the unique features of Lustre is the abstraction of the
network layer, which is done using a feature called LNET. In
addition to the obvious network entities such as Ethernet (1,
10, 40 GbE and beyond) and InfiniBand (SDR, DDR, QDR,
FDR and beyond), it is also capable of supporting legacy
fabrics such as Quadrics (ELAN) and MyriNet. In addition, it
has been enhanced to handle specific compute fabrics such
as Cray Gemini, Aries and Cascade.

LNET is part of the Linux kernel space and allows for full
RDMA (in the case of InfiniBand) throughput and zero copy
communications. This means that for large streaming I/O,
Lustre can initiate a multi OST read or write using a single
Remote Procedure Call (RPC) that allows the client(s) to
access data using pure RDMA, regardless of the amount of
data being transmitted. This allows for extreme low-latency
communication and extreme throughput.

LNET Routing

The unique features of LNET also provide the means for
some advanced networking features. One such feature is
LNET routing. Many HPC sites have several different compute
systems as well as auxiliary systems and workstations for
visualization and data analysis. Some of these network-
connected resources use a separate file system for each,
which leads users to manually or semi-automatically copy
data between them. This not only introduces delays in
moving large amounts of data, but also creates significant
administrative overhead in file version control and managing
duplicate files on multiple distributed systems. To counter this
administrative challenge, some users prefer to have a single,
large file system as a repository for all data in addition to the
scratch properties usually indicating a Lustre file system in the
first place; however, this requires all contributing resources at
the site to connect as Lustre clients.

Caesar

Inside The Lustre File System

Although Lustre version 2 has been available since 2010, a
majority of the systems currently running Lustre are still on
the 1.8.x branch. The reasons for this are many, and vary from
user to user. One of the main reasons, however, is a legacy
perception of the stability of the Lustre code, which focused
primarily on performance. Most development efforts up to
Lustre version 1.8 were focused on stability to attain maximum
performance, whereas the majority of the projects since then
have focused on adding increased stability and robustness to
attain even higher performance and data-capacity scale along
with more enterprise features.

While most of today’s research and academic users may not
need, nor use, any of the new Lustre version 2.x features,
leaders in government and the commercial technical
computing industry are demanding better data management
tools, reliability and serviceability. All of this means
significantly improved solution robustness, flexibility and
bottom-line usefulness or user productivity, not just the limited
scope of “Lustre code” stability primarily for performance.

Overall, with proven supercomputing industry success
and an expanded universe of new users in oil and gas, life
sciences, genomics, pharmacology, finance and Big Data
analytics, Lustre must be absolutely stable, robust and highly
scalable in performance and capacity, as well as support a
rich set of improved tools and capabilities. The best of both
worlds is coming together. Today, Lustre 2.x systems are
being deployed in many data centers belonging to energy
companies and climate and weather services, as well as within
financial institutions.

The following are brief explanations of some of these new
Lustre 2.x features.

Lustre Version 2 and
Beyond

Lustre Changelogs

Monitoring changes in a Lustre 1.6/1.8 file system is highly
resource-intensive and requires frequent disk scanning. As this
is not feasible on a large, active system, a new mechanism to
monitor changes was needed.

Lustre 2.0 and beyond (Lustre 2.6 is the most recent version
as of this writing) contains a new kernel ring buffer called
Lustre changelogs. The changelogs feature records events
that change the file system namespace or file metadata.
Depending on the intended use (Hierarchical Storage
Management [HSM], file pruning, system rebalancing, quotas,
etc.), specific changes such as file creation, deletion, renaming
and attribute changes are recorded with the target and parent
file identifiers (FIDs), the name of the target and a timestamp.

The data can then be used for a variety of purposes:

•	 Capture recent changes to feed into the policy engine of
an archiving system or HSM backend

•	 Use changelog entries to exactly replicate changes in a
file system mirror

•	 	Set up “watch scripts” that take action on certain events
or directories

•	 Maintain a rough audit trail (file/directory changes with
timestamps but no user information)

To manage such events, several tools are currently available.
Perhaps the prime tool currently available is RobinHood
(developed by CEA as the policy engine for HSM), which
extracts desired data and stores it in one or more external
MySQL databases. The databases can then be used to
generate the necessary or desired actions on files and data.

Inside The Lustre File System

Data Layout Policies

While the use of extended attributes allowed Lustre to
distribute a single file over up to 160 OSTs to provide a single
shared file with maximum bandwidth, this has been shown to
be an ineffective approach as requirements increase. Moving
to an FID bitmap, and changing the distribution coding, a
single file can now be distributed over up to 2,000 OSTs. This
is usually referred to as very wide striping.

That said, most users keep the file distribution (i.e., striping) to
a minimum and prefer to achieve parallelism by letting many
different applications or write threads do I/O to a single OST
and allow the MDS to distribute the load to all available OSTs.

Size on MDS

One issue that emerges with a parallel file system capable of
delivering a single namespace of 100+ PBs is the number of
files and directories it needs to handle. Using tools such as
“ls –l” and “df –h” incurs a significant performance impact on
large systems, as each single object needs to be scanned. In
Lustre versions earlier than 2.0, listing the files in a directory,
getting the size of files and directories, and determining
how much of the file system is being used required doing a
“glimpse lookup”—in other words, finding the last object of
a file and calculating the approximate size of each file based
on the object size and extent of the objects. This requires the
use of Lustre-specific pre-fix “lfs” that implements the above-
mentioned shortcuts.

Obviously, this does not scale well, and best practices have
been recommended (by still using the “lfs” pre-fix) to read
sizes, etc., from the MDS rather than scan all the OSTs.

The Size on MDS (SOM) feature keeps a persistent database
of Open Files that are indexed by FIDs. Clients request Size of
file from MDS not by communicating to every OSS, but rather
by single RPC to the MDS.

0:{ost#, objid}

1:{ost#, objid}

-

-

128:{ost#, objid}

LOV_PATTERN_RAID0

FID

OST BITMAP

LOV_PATTERN_BITMAP

Inside The Lustre File System

4 MB I/O

While the initial design of Lustre was very forward thinking, a few early decisions have had a significant impact on performance
today. One such decision was to hardcode Lustre network transfers to 1 MB RPCs and cap network buffers to the same level.
While this made perfect sense with the disk drives of the time, modern drives are different, and I/O throughput peaks at around

Network Request Scheduler (NRS)

Lustre was originally created for a specific purpose: large streaming I/Os typical of supercomputers in U.S. national labs at the
turn of the century. However, today’s systems often require a large number of small files to be written and read as part of their
execution. When studying individual client I/O behavior in large systems, taken individually, I/O often looks quite random. For a
Lustre file system, random I/O is very detrimental with regards to performance, and steps are often taken to minimize random
access I/O. However, when studying a larger system as a whole, these random I/O calls can form patterns reminiscent of
streaming I/O behavior. The purpose of the network request scheduler is to re-order collective I/O (from many clients writing to a
single file) into an effective, sequential stream (through the Portal RPC, or PTLRPC, service) while maintaining consistency with
read-write ordering semantics and locking.

4 MB for both reads and writes using
the original settings. The solution
to this problem is to allow multiple
1 MB chunks to travel from client
to server as part of a single, client-
based read or write RPC. Rather
than implementing fundamental
changes to enable I/O buffers larger
than 1 MB, Lustre can conduct
multiple transfers as part of the RPC,
before the OST backend initiates
I/O. Because the OSS read cache
feature provides read-only caching
of data on every OSS, the size of the
network transfer from server to client,
for read operations, is less critical.

The NRS optimizes throughput by implementing several basic policies, such as fair client I/O scheduling and prioritized clients.

The NRS feature was introduced in Lustre 2.4 and works transparently by monitoring the I/O of the file system.

Read

T
hr

o
ug

hp
ut

 M
B

/s

Write

I/O size (bytes)

Inside The Lustre File System

Distributed Namespace (DNE) Servers

As mentioned earlier, the perceived lack of metadata performance is often considered a major drawback of Lustre. To solve this
problem, Lustre 2.4 shipped with enhanced metadata functionality where it is not possible to add multiple metadata namespace
servers in an active/active design. Not long ago, the concept of “clustered metadata servers” was intended to offer more features
than the current implementation; however, this has proven to be too difficult to develop, and that project has evolved into the
current concept of Distributed Namespace (DNE) servers.

Each DNE server “owns” part of the logical file tree, with the MDT0 handling the root level and each DNE handling a piece of the
entire namespace—for example, /mnt/lustre/a and /mnt/lustre/b, where a and b are physically separate parts of the file system.
While the most obvious benefit of this approach is the ability to scale I/O to the system supporting in excess of 100,000 file
creates, there are other, similarly important use cases, such as separating different applications’ I/O loads to allow a well-behaved
I/O to be unaffected by another application’s disruptive I/O pattern.

Hierarchical Storage Management (HSM)

Lustre doesn’t perform backups; currently, backups are performed either manually or using a brute force approach with one or
more data movers bridging the area between Lustre and a secondary file system. By using Lustre-aware tools such as Lustre
rsync or Mutil7, it is possible to keep two or more directories in sync, thereby creating an effective backup copy. However, this
approach lacks automation and flexibility, and more importantly, does not offer any intelligent data management features.

This has long been recognized by the French Atomic Energy Commission (CEA), which developed a full HSM solution for internal
use that is now part of the Lustre 2.5 source tree.

7 http://sourceforge.net/projects/mutil/files/

Support multiple networks
IB, X-GigE

Inside The Lustre File System

The HSM solution consists of three main functional units:

•	 The Policy Engine – Open source tool called RobinHood8.
RobinHood uses the changelogs to create a database
with the parameters used to define a policy, such as last
touched, directory location, file size, owner, etc.

•	 Coordinator – Effectively adds a bit to the metadata
to define it as “moved” so that a read request is aware
that the file must be restored to the storage before the
process can begin. The coordinator is also responsible for
managing the objects that can be removed from the OSTs
once they’ve been fully migrated.

•	 CopyTool – The system can support one or more copytools
(each running on its own data mover client) that are
responsible for copying out or restoring the object to an
HSM backend.

The HSM backend is usually a complete storage system in
its own right. It can be either disk-based or tape-based, or a
combination. Today, there are several options from which to
choose. The original design uses an open source tape-based
backend called High Performance Storage System9 (HPSS)
originally developed by IBM.

In addition to the HPSS-based CopyTool, a POSIX copytool
allows connectivity to several other types of HSM backend,
such as:

•	 TSM – Tivoli Storage Manager

•	 SAM/QFS – Linux port of the old Sun Microsystem HSM
solution

•	 TAS – Tiered Adaptive Storage – Cray HSM solution based
on the Versity implementation of SAM-QFS10

•	 DMF – SGI’s storage tier virtualization solution11

8 https://github.com/cea-hpc/robinhood/wiki

9 http://www.hpss-collaboration.org

10 http://www.versity.com / http://www.cray.com/Products/Storage/Tiered-Adaptive-Storage.aspx

11 https://www.sgi.com/products/storage/idm/dmf.html

Inside The Lustre File System

Data Integrity

Silent data corruption and bit rot have long been major issues with large file systems. While Lustre does employ check summing
when sending data over the wire, the data path within each OSS is not protected in a similar way. There are currently several
projects under way to add end-to-end data integrity to Lustre. One of the more promising projects is T10-PI (Protection
Information, aka T10-DIF)—which, when combined with modern compute hardware, can perform the necessary calculations in
hardware and in essence perform the computations at wire speed. While not fully available today, at least one major vendor is
developing what’s called T10-PI type 2, which entails check summing from the OSS to the disk drive. There is currently a project
on the Lustre roadmap to push this all the way to the client.

Lustre Futures

As mentioned above, Lustre is one of the most successful open source projects; development of new features is carried out
by close to 70 developers representing some 20 companies and organizations. However, the complexity of maintaining a large
body of source code and ensuring support for newer kernels and Linux distributions while still adding new functionality without
introducing disruptive code regression artifacts is a tall order indeed. That said, the list of proposed feature developments is long
and covers a number of very interesting features, including enhanced support for small files (including “Data on MDS,” or storing
small data directly on the MDT when this can be accomplished within a single RPC), enhancements in DNE (such as “striped
directories” and “async commits”), modernizing Kerberos support (for wide area Lustre implementations, among others) and
improved Lustre file systems check (LFSCK), to mention a few.

Inside The Lustre File System

seagate.com

	 AMERICAS	 Seagate Technology LLC 10200 South De Anza Boulevard, Cupertino, California 95014, United States, 408-658-1000
	 ASIA/PACIFIC	 Seagate Singapore International Headquarters Pte. Ltd. 7000 Ang Mo Kio Avenue 5, Singapore 569877, 65-6485-3888
	 EUROPE, MIDDLE EAST AND AFRICA	 Seagate Technology SAS 16–18, rue du Dôme, 92100 Boulogne-Billancourt, France, 33 1-4186 10 00

© 2015 Seagate Technology LLC. All rights reserved. Printed in USA. Seagate, Seagate Technology and the Wave logo are registered trademarks of Seagate Technology LLC in the United States and/or other
countries. QuietStep is either a trademark or registered trademark of Seagate Technology LLC or one of its affiliated companies in the United States and/or other countries. All other trademarks or registered
trademarks are the property of their respective owners. When referring to drive capacity, one gigabyte, or GB, equals one billion bytes and one terabyte, or TB, equals one trillion bytes. Your computer’s
operating system may use a different standard of measurement and report a lower capacity. In addition, some of the listed capacity is used for formatting and other functions, and thus will not be available for
data storage. Actual data rates may vary depending on operating environment and other factors. Seagate reserves the right to change, without notice, product offerings or specifications. WP_Inside_Lustre_US
January 2015

Lustre has been a mature and stable file system for a number
of years, but its requirements and associated use model are
changing. Simplicity of management is now an often stated
requirement in Request for Proposals (RFPs), and customer
requirement discussions are occurring specifically around
the need for a fully functional and scalable management
graphical-user interface (in addition to the ubiquitous
command line interface). Another trend in Lustre adoption
and proliferation is that Lustre is no longer only used for
the original purpose of constituting a scratch file system
for HPC computations. Today, Lustre is increasingly used
as a file system for home directories as well as for project
space. This means the requirements for reliability and data
integrity increase every year, along with expansion of the
compatibility matrix for network- and gateway-connected
compute resources. One might think that these requirements
are opposite to extreme performance, but “best of both world”
solutions are under way that work for both types
of requirements.

Summary and Discussion

Today, among leading data-intensive commercial entities
and institutions that previously depended on enterprise file
systems, there is a clear trend toward moving to Lustre. This
includes not only weather and climatology institutions such
as DED and DKRZ in Germany, ECMWF and Met Office in the
UK and the South African Weather Service (SAWS), but also
companies in the financial and energy sectors. The proven
stability at sites such as NCSA Blue Waters in the U.S. and
CEA in France has done much to prove the reputation that
Lustre serves much more than just performance.

It is interesting to see storage companies such as Seagate,
EMC and NetApp participating in the development efforts
through OpenSFS12, in addition to compute vendors such as
Cray, Fujitsu and SGI augmenting the national labs and other
high-profile end users. The continued support (both financially
and through in-house development) is not only critical to
the future of Lustre, but also forms the basis of the proven
success of an open source, high performance parallel file
system. The future is bright indeed.

12 http://opensfs.org/participants/
Take the Next Step

Find out more about the Seagate® ClusterStor™ line of HPC
storage systems by calling 1.800.SEAGATE or
visiting www.seagate.com/hpc

