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The future of manufacturing is here. It has been ushered by data, AI, and machine learning. Its path 
is being blazed by a unique collaboration among Hewlett Packard Enterprise, NVIDIA, and Seagate.

Today’s manufacturing processes are complex and precise—with little or no tolerance for errors.  
The processes have thus far been automated mostly with robotic arms and other rule-based 
systems. However, that level of automation alone is not enough, as operational managers face ever  
increasing challenges:

Thanks to the adoption of artificial intelligence (AI) technologies—particularly machine learning (ML) 
and deep learning (DL)—solutions to questions like these are now at hand. Significant productivity 
and efficiency improvements can become reality.

A 2018 report from the McKinsey Global Institute forecasts that AI will add 16% (or $13 trillion) 
to the global economic output by 2030. The early adopters of edge-enabled technology stand to 
benefit the most. Seagate Technology—a global leader in design and manufacturing of disk drives, 
flash storage, and other data storage and management solutions—has successfully applied AI 
and ML to build an anomaly-detection solution for quality control of recording head wafer images 
in the process of disk drive manufacturing. The production of read/write heads and head gimbal 
assemblies is a highly complex manufacturing process. 

How Deep Learning Can Boost Efficiency  
on Factory Floors

• How can we reduce investments for clean-room resources? 

• How can we cut days or, better yet, weeks from manufacturing time? 

• How can we catch more defects before the final assembly step? 

• How can we improve current clunky rule-based anomaly detection systems? 

• How can we save time and money needed to send data to the cloud for processing?

• Why can’t data be stored right on the factory floor—and be put to work there? 
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This paper presents a tested architecture overview for Seagate’s own AI-assisted smart factory 
manufacturing. The hope behind this project is to enable other businesses to also use this 
architecture in their own AI/ML manufacturing centers. The architecture is based on Seagate’s 
knowledge of the IT infrastructure, both as a provider and a consumer combined with its AI/ML and 
storage business expertise—as well as Seagate’s partnership with Hewlett Packard Enterprise (HPE) 
and Seagate’s continued research on AI/ML with NVIDIA. 

While the implementation discussed here is specific to the manufacturing process in the data  
storage industry, it is generally applicable to other types of processes—particularly those with the 
following characteristics:

• High-volume, high-precision, discrete manufacturing processes producing tools such as 
semiconductors, electronics, automotive parts, machine parts, etc.

• High-value manufacturing products using high-cost capital equipment

• Verticals generating large volumes of images that cannot be analyzed with traditional 
methods

• Anomaly detection in security, smart cities, and autonomous vehicles

• Highly complex manufacturing processes with many stages

• Automated manufacturing processes that can collect equipment, process, and 
inspection data

• Quality control and inspection-driven manufacturing processes 

• Lengthy manufacturing processes 

• Multisite global manufacturing 
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Hard disk drives (HDD) enable active and archival data storage for enterprise and cloud service 
providers. They can be found in many common consumer products, such as notebook and desktop 
computers, gaming consoles, set-top box DVRs, personal backup drives, and home network drives. 
They are widely used in enterprise data centers, cloud service providers, specialized applications 
such as surveillance, media and entertainment, and content delivery networks. For each usage 
category, specialized hard drives have been designed to optimize different characteristics such as  
I/O performance, capacity, and cost. In aggregate, about 400 million HDDs are produced annually 
by the industry. 

Seagate manufactures more disk drives worldwide than any other manufacturer. The company is 
highly vertically integrated, since it designs and manufactures all of the key components used in its 
solutions, and its engineers invent many key HDD technologies. For example, the Seagate® Heat 
Assisted Magnetic Recording (HAMR) technology offers the highest recording density while enabling 
HDD capacities of 20TB to 40TB in the near future. 

Seagate manufactures magnetic (read/write) heads to produce hard disk drives at two wafer fabs 
located in the US and Europe (see Figure 1). Read/write heads are created on wafers using  
processes similar to semiconductor manufacturing with comparable dimensions. Processed wafers 
are sent to two head fabrication sites located in Asia for sectioning, processing, and assembly into 
head gimbal assemblies.  

Seagate’s Industry Expertise 

Site Overview

1 Source: “Worldwide Hard Disk Drive Quarterly Update Q4'18 Summary and Updated 4-Quarter Outlook” by IDC’s John Rydning
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The disk drive manufacturing process can be broadly 
categorized into three areas:

Disk Drive 
Manufacturing

Overview 
• Read/write heads and head gimbal assemblies

• Head stack assembly

• Final product assembly consisting of head stack assembly, media (disk platter), servo motor, 
circuit board assembly, etc.

Figure 1. Seagate’s manufacturing and design sites
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Disk drive heads are fabricated using a process 
similar to semiconductor wafer fabrication, but with 
unique materials and processes (see Figure 2). The 
head fabrication starts with a wafer substrate that is 
processed in over 1000 fabrication steps during a 
six-month period. Each wafer yields approximately 
100,000 disk heads after the wafer is sectioned into 
individual bars. The individual bars are then further 
processed, and the separate read-and-write heads 
are attached to head gimbal assemblies. Multiple-
head gimbal assemblies are inserted into a head 
stack assembly that allows read/write operations to 
both sides of multiple disk platters.

Anomaly Detection

Seagate’s wafer fabs produce thousands of wafer 
images each day (like those in Figure 3). Of the over 
1000 fabrication steps in the head manufacturing 
process, several hundred are subject to process 
control inspection using automated optical and 
scanning electron microscopy (SEM) imaging.

 Inspection stations are positioned at critical stages 
of wafer production to check for defects. Using both 
visible light and electron beams, automation tools 
play a critical role in quality control. They generate 
more than 10GB of imagery per day for inspectors to 
review, either manually or with highly specialized and 
rule-based programs. Both options are extremely 
labor-intensive and costly to implement for all 
images.

Maintaining high yield rates is critical to managing 
product cost and margin objectives in all 
manufacturing processes, especially in high-value, 
long processes. Therefore, it is very important to 
recognize process excursions as soon as possible to 
remedy the problem and identify random defects. 

Figure 2. From wafers to heads 

Slider

Bar

Head Stack 
Drive

Erroneous rejection of good quality materials 
decreases the yield rate of the affected process 
stage, while allowing defective materials to pass 
onto the next stage results in higher material 
costs, higher processing costs, and decreased 
yield rates in the downstream process stages. 
For these reasons, Seagate’s manufacturing 
operations focus on early defect detection, 
recognition, and classification using automated 
systems. 

Seagate previously used conventional rule-
based machine vision systems to automate 
the anomaly detection process. While these 
systems provide a high accuracy rate, they have 
several disadvantages as compared to an ML/
DL approach. The rule-based system requires 
that parameters for each defect class are 
statically coded and the fixed ranges are used 
to determine the good/reject criteria. Changes 
in defect appearance or new types of defects 
require additional rules to be added or changes 
to be made to existing rules.  
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A Two-Step Solution

There are two phases to developing the ML/DL inspection system: training and inference  
(see Figure 4).

The training phase uses classified image data as input into the system. After running the ML model 
hundreds of times using the training data, the training process produces the weights in the neural 
network model—based on the way the nervous system works—which classifies different categories 
of defects. The training process is very computationally and data intensive. It is done as an offline 
process by data scientists. 

The inference phase is done in the factory using real-time imagery to make classification decisions 
during the inspection process. This process uses the model developed during training to make the 
classification decisions on the inference server. Running the model in inference mode allows the use 
of lighter-weight computing resources. 

The objective of the training process is to obtain a high level of classification accuracy for the model 
while the objective of the inference model is real-time classification for each image processed.

Figure 3. ML training use case with open "good" images from the biggest cluster
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Overall, there are three tiers of storage in the factory environment, as shown in Figure 5. The first-
level local flash storage is part of the GPU server and is typically not RAID protected to be used 
for persistent storage. The second-level working storage is used to store training data for the GPU 
training servers and serves as local storage for the data science team working on model development. 
The third-level capacity-defined data lake provides a storage repository for all image data produced 
by factory floor image sensors and retained for use in long-term time-series analysis. This may be 
optimized for cost and capacity with enterprise-level Seagate disk arrays such as the Seagate® Exos™ 
5U84 84-drive disk array. 

Figure 4. DL overview (Source: NVIDIA)

Storage Requirements and Implementation for AI
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Since the Tier 3 data lake storage was already implemented within Seagate’s factory network, and 
the Tier 1 storage was integrated on the GPU server, this project focused on the Tier 2 storage 
requirements.

The primary design goals for Tier 2 storage in designing a globally distributed storage  
architecture were:

Seagate is not only a major manufacturer of disk and flash media, it also is a major supplier of 
storage systems and platforms, including disk and flash arrays, storage area network (SAN) 
products, hyper-converged storage platforms that integrate storage and compute into a single 
chassis, and data-protected disk and flash array products.

Storage solutions commonly use Software-Defined Storage (SDS). In SDS, industry-standard 
servers run file, object storage management software, and block storage devices. The underlying 
storage hardware (flash or disk arrays) is abstracted by software that provides storage services.   
This abstraction also allows decoupling of storage hardware from computing hardware and enables 
a best-of-breed solution to be assembled by combining the best storage subsystem with the best 
SDS software. The disaggregation of the storage subsystem, storage software, and computing 

• Minimize cost, both CapEx, including initial cost of hardware and software, and OpEx, 
including cost for maintaining and managing the storage systems.

• Ensure a disaster recovery (DR) capability if one site became unavailable using data 
replication between sites.

• Implement software-defined storage with support for multiple storage protocols, 
including file and block storage with capability for object storage for future applications.

In addition, the following secondary requirements were desirable:

• Support for hybrid cloud access

• Docker, Kubernetes, and VMware® vSphere® hypervisor support

• Global namespace support 

• Easy-to-use data and software management through web and CLI interfaces

• Support for REST API, preferably through a management framework

• Local failover for disaster recovery

• Global technical support
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hardware allows the system to scale out for higher capacities through adding additional computing 
nodes and attached storage subsystems and is more cost-effective than tightly coupled appliance-
based network-attached storage (NAS) systems.

Seagate engineers used the Seagate Nytro® X 2U24 all-flash array, shown in Figure 6, which 
combines a high-performance flash storage array with an integrated hardware-based data 
protection solution. The Nytro X platform, together with storage management software running on 
industry-standard servers, forms a cost-effective and scalable storage solution ideally suited for 
developing AI systems. The Nytro X provides high I/O throughput of 12Gb/s host speed for SAS 
interfaces with 7Gb/s read throughput and 5.5Gb/s write throughput using the onboard 5005 
controller module (see Figure 7). 

Nytro X’s active-active dual controllers and innovative hardware-based RAID and erasure coding 
provide high reliability and data protection. The system’s Seagate-designed ASIC provides high 
throughput of up to 600K IOPS with the 5005 controller and data protection with Seagate’s ADAPT 
erasure coding or RAID levels 0, 1, 3, 5, 6, 10, and 50. The compact 2U rack-mount array contains 
24 bays supporting up to 91TB internally using the 5005 controller.
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Seagate developed and tested two approaches to implementing the ML/DL development and 
deployment platform: one is a result of partnering with HPE and the other is a collaboration with 
NVIDIA. Each approach used similar equipment and software and achieved similar results. Both 
methods, discussed below, are alternatives for readers to consider.

5005 Controller Performance
600,000 IOPS @ 1ms latency | 500,000 IOPS @ 250 µs latency | 7GB/s read throughput | 5.5GB/s write 
throughput

Expansion BODs J1224 (2U24) | Maximum of 3 EBODs

Advanced Features Thin provisioning | Snapshots | Asynchronous replication

High-Availability Features
Redundant hot-swap controllers | Redundant hot-swap devices, fans, power | Dual power cords | Hot 
standby spare | Automatic failover | Multi-path support

Device Support SAS SSD

Data Protection Seagate ADAPT | RAID levels supported: 0, 1, 3, 5, 6, 10, and 50

System Configuration (24, 2.5-in devices) 91TB max | With 3 EBODs: 364TB (based on 3.8TB SSDs)

Hosts

External Ports 8 per system

Fibre Channel Models Host speed: 16Gb/s, 8Gb/s Fibre Channel | Interface type: SFP+

iSCSI Models Host speed: 10Gb/s, 1Gb/s iSCSI | Interface type: SFP+

SAS Models Host speed: 12Gb/s, 6Gb/s SAS | Interface type: HD Mini-SAS

System Configuration

System Memory 16GB per system (4005), 32GB per system (5005)

Volumes per System 1024

Cache Mirrored cache: Yes | Supercapacitor cache backup: Yes | Cache backup to flash: Yes – nonvolatile

Management

Interface Types 10/100/1000 Ethernet, Mini USB

Protocols Supported SNMP, SSL, SSH, SMTP, HTTP(S)

Management Consoles Web GUI, CLI

Management Software
Seagate Systems storage management console | Remote diagnostics | Nondisruptive updates | Volume 
expansion

Figure 7. Seagate Nytro X 2U24 all-flash array specifications
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The Architecture Overview

In the first implementation, Seagate partnered with HPE, a leading enterprise systems and solutions 
provider, using the HPE Edgeline and Apollo hardware platforms and HPE’s OneAI software platform 
(see Figure 8). HPE’s Apollo product line is optimized for high-performance computing (HPC) 
applications including AI and ML. The HPE Edgeline product line is a family of converged edge 
products designed for industrial IoT, edge computing, and AI inference applications. Seagate also 
collaborated with HPE as an early alpha tester of HPE’s OneAI DL development and deployment 
automation software platform. This implementation used Seagate’s Nytro X all-flash array storage 
system to provide high-performance persistent storage.

Seagate Smart
Operations Data Center

DTR VM Servers

Kubernetes VM Servers

Public Cloud

HPE EL4000 HPE Apollo 6500

10G Data Network

Nytro 5005 AFA

File Server
Production image 
storage platform

Tool Control

16Gb/s FC

NFS NFS

Reset UID
UID

1

UID

2

UID

3

UID

4

Edgeline
EL4000

Reset UID
UID

1

UID

2

UID

3

UID

4

Edgeline
EL4000

UID

iLO

Drive Bay ID:

108642

531 ProLiant
DL360
Gen10

UID

iLO

Drive Bay ID:

108642

531 ProLiant
DL360
Gen10

Figure 8. Configuration using HPE Apollo 6500 training server with NVIDIA V100 GPUs, Edgeline EL4000 
inference, and NVIDIA P4 including Seagate’s Nytro X all-flash array
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The HPE Apollo 6500 Gen 10 is an optimized DL training platform containing eight NVIDIA® Tesla® 
V100 GPUs to accelerate neural network models and deliver up to 125 TFOPS of single precision 
compute performance. It integrates two server processors supporting up to 3TB of memory and 16 
bays for local flash drives. The Seagate Nytro X all-flash array provides high-speed persistent storage 
using an HPE DL360-configured network file system (NFS) to the Apollo 6500. The HPE Edgeline 
EL4000 server is designed for large-scale inference workloads for edge computing and factory floor 
deployments utilizing up to four blade servers, each with one NVIDIA Tesla P4 GPUs, and is capable of 
running multiple inference models simultaneously.

HPE’s OneAI software platform, pictured in Figure 9, is a microservices-based model development 
and deployment system specifically designed for DL. The microservices environment using Docker 
containers allows models to be fine-tuned, managed, and easily deployed. The models are developed 
using Juypter notebooks for creating and sharing DL models within the data science team. The 
Seagate Nytro X all-flash array is used for storing the training data and inference data.  

The DL models developed on the Apollo 6500 are then deployed on the Edgeline EL4000 running  
in Docker containers using TensorRT run-time and using Apache NiFi for automated dataflow   
between systems. 

Figure 9. The HPE OneAI software architecture (Image source: HPE)
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Training Data

The training data set consists of over 100,000 images that have been labeled as True Negative, True 
Positive, False Negative, and False Positive. The original images are 480×680 pixels, 24-bit (three 
colors, RGB), which were cropped and converted to grayscale as 140×140 pixels, 8-bit images. To 
balance the categories of the images, Seagate used a 31,000 subset of the training images.

While data labeling remains a challenge for many manufacturing and industrial uses of ML, Seagate has 
developed a semi-automated method for classifying the training data by preprocessing the data using 
a clustering similarity algorithm and then presenting sample images to a human expert for validation. 

The Seagate ML implementation is typical for image processing applications using a DL approach 
called supervised learning, which uses convolutional neural networks that must be trained to identify 
different classes of defects. However, as is typical in most manufacturing processes, the image data 
produced from optical and SEM images is unlabeled. The training process involves ingesting a large 
sample image data set into the model that has been labeled as good or with the class of defect to be 
identified. 

The use of DL neural networks for image recognition applications is well covered in the existing 
literature. While there are many neural network models for image processing, it is left to the 
implementer to select the best one along with the configuration parameters to optimize the model 
accuracy. Seagate’s team tested 30 different models using the training data to determine the best 
fit. Each test was run more than 1000 times (each run is called an epoch), with the training data 
randomized for each run to prevent overfitting the model to the data set.

• The size of the training data was limited by several factors:

• Data labeling processing and need for human experts to verify classification

• Periodic changes in process technology and equipment setup limit the training data to less 
than three months of data

• Time to process data per epoch 
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The training data process starts with image data generated by a particular inspection step. This data is 
stored in a local factory-site data archive and then aggregated to a global data archive. Images used for 
the training process are cleaned and aggregated in an extract, transform, and load (ETL) process (as 
shown in Figure 13). The resulting data set is then input into an image recognition clustering algorithm 
developed by Seagate to preprocess the images and group by similarity. The data set is labeled by 
defect type and is verified on a sample basis by a quality engineering team at Seagate. The resulting 
data set is on the order of 30,000 to 50,000 images. A portion of the labeled data set is held from the 
training data and used to verify the accuracy of the model.

As shown in Figure 14, the process for developing the ML model is iterative and requires repeated 
testing and tuning to determine the optimal model characteristics and parameters. To shorten the 
time to deployment and best use the time of the data science team developing the model, a high-
performance training environment is necessary.

Figure 13. Training data flow
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Figure 14. Stages in ML model development 
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Deep Learning Model

Seagate used a DNN model for the classification model. The model uses open source software 
including the Keras Python Deep Learning Library (https://keras.io/) and TensorFlow (https://www.
tensorflow.org/), Seagate used a DNN model for the classification model. The model uses open 
source software including the Keras Python Deep Learning Library.

Seagate used a DNN model for the classification model. The model uses open source software 
including the Keras Python Deep Learning Library (https://keras.io/) and TensorFlow (https://www.
tensorflow.org/), Seagate used a DNN model for the classification model. The model uses open 
source software including the Keras Python Deep Learning Library.
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Figure 15.  Results of training model runs

Mean 1.82ms

Minimum 1.57ms

Maximum 5.80ms

Time to first inference 1.36 seconds

Figure 17. Interference processing results

Number of 

Concurrent Models

Image Before

Processing/Loading

Time to Run 200 
Epochs2

1 6.7 minutes 26.3 minutes

2 6.7 minutes 26.3 minutes

4 6.7 minutes 30 minutes

8 7.0 minutes 30.3 minutes

Figure 16. Training processing performance with 
multiple concurrent models. 

Each run of the model, or an epoch, took an average of 7.9 seconds with a minimum of 7.7 and 
maximum of 8.2 seconds. Seagate ran the model for 200 epochs, which took 26.3 minutes. That 
model converges after around 50 epochs with an accuracy of over 95%, as shown in Figure 15.

Seagate ran training processing on the DGX-1 server using the Keras model with TensorFlow back 
end. To simulate the DGX-1 server running concurrent models, multiple training sessions ran in 
containers where the GPUs were explicitly assigned. Training time depends on many factors, such 
as the neural network model, the number of classification classes, type and size of training data set, 
software libraries used, assignment of the training task to GPUs on the DGX-1 server, and number of 
epochs run.
2 Training time depends on many factors including but not limited to the neural network model, number of classification classes, type and size of training data set, software libraries 
used, assignment of the training task to GPU’s on the DGX-1 server, and number of epochs run.

technical whitepaper

18



Conclusion

In collaboration with partners HPE and NVIDIA, Seagate has developed machine learning solutions 
focused on large datasets for training ML/DL models. 

The Seagate Nytro X all-flash array together with software-defined storage provides a cost-effective 
solution for persistent storage of training data. The use of a flash-based storage platform   
provides high-bandwidth storage and low latency while minimizing storage administration overhead. 
The high-performance storage solution is well matched to the performance of the GPU-based 
training platforms. This enables the data science team to maximize productivity by running multiple 
simultaneous models and test various parameters to optimize the model performance during the 
iterative model development process. 

Seagate has deployed this solution in a machine vision defect inspection system used in hard disk  
read-and-write head manufacturing in one of Seagate’s factory sites and is planning to scale the 
solution to other sites. As this technology becomes incorporated into all of Seagate’s manufacturing 
processes, we expect to see up to a 20% reduction in cleanroom investments, a 10% reduction in 
manufacturing throughput time and up a 300% ROI from improved efficiency and better quality.

Manufacturing processes are complex. The window of tolerance tends to narrow. Like our factories, 
images from cameras and similar sensors provide rich sets of information about the process and parts 
that can be put to use. When we set out to solve our business problem, we did not simply attempt 
to use something off the shelf. We built this with our partners to solve our unmet need. We are now 
sharing this to help you with your needs and to improve on the architecture.
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Resources

HPC Solutions: http://www.seagate.com/solutions/high-performance-computing/

Big Data Analytics Solutions: http://www.seagate.com/solutions/data/big-data/ 
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