Before You Begin

Thank you for your interest in Maxtor hard drives. This manual provides technical information for OEM engineers and systems integrators regarding the installation and use of Maxtor hard drives. Drive repair should be performed only at an authorized repair center. For repair information, contact the Maxtor Customer Service Center at 800-2MAXTOR or 408-922-2085.

Before unpacking the hard drive, please review Sections 1 through 4.

CAUTION

Maxtor hard drives are precision products. Failure to follow these precautions and guidelines outlined here may lead to product failure, damage and invalidation of all warranties.

1. **BEFORE** unpacking or handling a drive, take all proper electro-static discharge (ESD) precautions, including personnel and equipment grounding. Stand-alone drives are sensitive to ESD damage.

2. **BEFORE** removing drives from their packing material, allow them to reach room temperature.

3. During handling, **NEVER** drop, jar, or bump a drive.

4. Once a drive is removed from the Maxtor shipping container, **IMMEDIATELY** secure the drive through its mounting holes within a chassis. Otherwise, store the drive on a padded, grounded, antistatic surface.

5. **NEVER** switch DC power onto the drive by plugging an electrically live DC source cable into the drive’s connector. **NEVER** connect a live bus to the drive’s interface connector.

6. **ELECTRICAL GROUNDING** - For proper operation, the drive must be securely fastened to a device bay that provides a suitable electrical ground to the drive baseplate.

Please do not remove or cover up Maxtor factory-installed drive labels. They contain information required should the drive ever need repair.
Contents

Section 1 — Introduction

Maxtor Corporation 1 - 1
Products 1 - 1
Support 1 - 1
Manual Organization 1 - 1
Abbreviations 1 - 1
Conventions 1 - 2
Key Words 1 - 2
Numbering 1 - 2
Signal Conventions 1 - 2

Section 2 — Product Description

Product Features 2 - 2
Functional/Interface 2 - 2
Zone Density Recording 2 - 2
Read/Write Multiple Mode 2 - 2
Ultra ATA - Mode 5 2 - 2
Multi-word DMA (EISA Type B) - Mode 2 2 - 2
Sector Address Translation 2 - 2
Logical Block Addressing 2 - 3
Defect Management Zone 2 - 3
On-the-Fly Hardware Error Correction Code (ECC) 2 - 3
Software ECC Correction 2 - 3
Automatic Head Park and Lock Operation 2 - 3
Cache Management 2 - 4
Buffer Segmentation 2 - 4
Read-Ahead Mode 2 - 4
Automatic Write Reallocation (AWR) 2 - 4
Write Cache Stacking 2 - 4
Major HDA Components 2 - 5
Drive Mechanism 2 - 5
Rotary Actuator 2 - 5
Read/Write Electronics 2 - 5
Read/Write Heads and Media 2 - 5
Air Filtration System 2 - 5
Microprocessor 2 - 5
Subsystem Configuration 2 - 6
Dual Drive Support 2 - 6
Cable Select Option 2 - 6
Jumper Location/Configuration 2 - 6
Cylinder Limitation 2 - 6
Section 3 — Product Specifications

Models and Capacities 3 - 1
Drive Configuration 3 - 1
Performance Specifications 3 - 1
Physical Dimensions 3 - 2
Power Requirements 3 - 3
Power Mode Definitions 3 - 3
 Spin-up 3 - 3
 Seek 3 - 3
 Read/Write 3 - 3
 Idle 3 - 3
 Standby 3 - 3
 Sleep 3 - 3
EPA Energy Star Compliance 3 - 3
Environmental Limits 3 - 3
Shock and Vibration 3 - 4
Reliability Specifications 3 - 4
 Annual Return Rate 3 - 4
 Quality Acceptance Rate 3 - 4
 Start/Stop Cycles 3 - 4
 Data Reliability 3 - 4
 Component Design Life 3 - 4
 EMC/EMI 3 - 5
 EMC Compliance 3 - 5
 Canadian Emissions Statement 3 - 5
Safety Regulatory Compliance 3 - 5

Section 4 — Handling and Installation

Hard Drive Handling Precautions 4 - 1
Electro-Static Discharge (ESD) 4 - 1
Unpacking and Inspection 4 - 2
Repacking 4 - 3
Physical Installation 4 - 3
Before You Begin 4 - 4
 Please Read 4 - 4
 Back up. Protect Your Existing Data 4 - 4
 Tools for Installation 4 - 4
 System Requirements 4 - 4
 Operating System Requirements 4 - 4
Hook up 4 - 4
 Boot the System with MaxBlast Plus Diskette 4 - 4
 Configure the Drive Jumpers 4 - 4
 Installing 5.25-inch Mounting Brackets 4 - 4
 Install Hard Drive in Device Bay 4 - 5
 Attach Interface and Power Cables 4 - 5
Start up 4 - 5
Set up 4 - 5
Section 5 — AT Interface Description

Interface Connector 5 - 1
Pin Description Summary 5 - 1
Pin Description Table 5 - 2
PIO Timing 5 - 3
DMA Timing 5 - 4
Ultra DMA Timing Parameters 5 - 5

Section 6 — Host Software Interface

Task File Registers 6 - 1
 Data Register 6 - 1
 Error Register 6 - 1
 Features Register 6 - 1
 Sector Count Register 6 - 2
 Sector Number Register 6 - 2
 Cylinder Number Registers 6 - 2
 Device/Head Register 6 - 2
 Status Register 6 - 2
Command Register 6 - 3
 Read Commands 6 - 3
 Write Commands 6 - 3
 Mode Set/Check Commands 6 - 3
 Power Mode Commands 6 - 3
 Initialization Commands 6 - 3
 Seek, Format, and Diagnostic Commands 6 - 3
 S.M.A.R.T. Commands 6 - 3
Summary 6 - 4
Control Diagnostic Registers 6 - 5
 Alternate Status Register 6 - 5
 Device Control Register 6 - 5
 Digital Input Register 6 - 5
Reset and Interrupt Handling 6 - 6

Section 7 — Interface Commands

Command Summary 7 - 1
Read Commands 7 - 2
 Read Sector(s) 7 - 2
 Read Verify Sector(s) 7 - 2
 Read Sector Buffer 7 - 2
 Read DMA 7 - 3
 Read Multiple 7 - 3
 Set Multiple 7 - 3
Write Commands 7 - 4
 Write Sector(s) 7 - 4
Write Verify Sector(s) 7 - 4
Write Sector Buffer 7 - 4
Write DMA 7 - 5
Write Multiple 7 - 5
Mode Set/Check Commands 7 - 6
Set Features Mode 7 - 6
Read Native Max Address 7 - 7
Set Max 7 - 7
Set Max Password 7 - 7
Set Max Lock 7 - 7
Set Max Unlock 7 - 7
Set Max Freeze Lock 7 - 7
Power Mode Commands 7 - 8
Standby Immediate 7 - 8
Idle Immediate 7 - 8
Standby 7 - 8
Idle 7 - 8
Check Power Mode 7 - 8
Set Sleep Mode 7 - 8
Default Power-on Condition 7 - 9
Initialization Commands 7 - 10
Identify Drive 7 - 10
Initialize Drive Parameters 7 - 13
Seek, Format, and Diagnostic Commands 7 - 14
S.M.A.R.T. Command Set 7 - 15

Section 8 — Service and Support

Service Policy 8 - 1
No Quibble Service 8 - 1
Support 8 - 1

Glossary
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 1</td>
<td>PCBA Jumper Location and Configuration</td>
<td>2 - 6</td>
</tr>
<tr>
<td>3 - 1</td>
<td>Outline and Mounting Dimensions</td>
<td>3 - 2</td>
</tr>
<tr>
<td>4 - 1</td>
<td>Multi-pack Shipping Container</td>
<td>4 - 2</td>
</tr>
<tr>
<td>4 - 2</td>
<td>Single-pack Shipping Container (Option A)</td>
<td>4 - 3</td>
</tr>
<tr>
<td>4 - 3</td>
<td>Single-pack Shipping Container (Option B)</td>
<td>4 - 3</td>
</tr>
<tr>
<td>4 - 4</td>
<td>IDE Interface and Power Cabling Detail</td>
<td>4 - 5</td>
</tr>
<tr>
<td>5 - 1</td>
<td>Data Connector</td>
<td>5 - 1</td>
</tr>
<tr>
<td>5 - 2</td>
<td>PIO Data Transfer to/from Device</td>
<td>5 - 3</td>
</tr>
<tr>
<td>5 - 3</td>
<td>Multi-word DMA Data Transfer</td>
<td>5 - 4</td>
</tr>
<tr>
<td>5 - 4</td>
<td>Initiating an Ultra DMA Data In Burst</td>
<td>5 - 5</td>
</tr>
<tr>
<td>5 - 5</td>
<td>Sustained Ultra DMA Data In Burst</td>
<td>5 - 6</td>
</tr>
<tr>
<td>5 - 6</td>
<td>Host Pausing an Ultra DMA Data In Burst</td>
<td>5 - 6</td>
</tr>
<tr>
<td>5 - 7</td>
<td>Device Terminating an Ultra DMA Data In Burst</td>
<td>5 - 7</td>
</tr>
<tr>
<td>5 - 8</td>
<td>Host Terminating an Ultra DMA Data In Burst</td>
<td>5 - 7</td>
</tr>
<tr>
<td>5 - 9</td>
<td>Initiating an Ultra DMA Data Out Burst</td>
<td>5 - 8</td>
</tr>
<tr>
<td>5 - 10</td>
<td>Sustained Ultra DMA Data Out Burst</td>
<td>5 - 8</td>
</tr>
<tr>
<td>5 - 11</td>
<td>Device Pausing an Ultra DMA Data Out Burst</td>
<td>5 - 9</td>
</tr>
<tr>
<td>5 - 12</td>
<td>Host Terminating an Ultra DMA Data Out Burst</td>
<td>5 - 9</td>
</tr>
<tr>
<td>5 - 13</td>
<td>Device Terminating an Ultra DMA Data Out Burst</td>
<td>5 - 10</td>
</tr>
</tbody>
</table>
Maxtor Corporation

Maxtor Corporation has been providing high-quality computer storage products since 1982. Along the way, we’ve seen many changes in data storage needs. Not long ago, only a handful of specific users needed more than a couple hundred megabytes of storage. Today, downloading from the Internet and CD-ROMs, multimedia, networking and advanced office applications are driving storage needs even higher. Even home PC applications need capacities measured in gigabytes, not megabytes.

Products
Maxtor’s products meet the demanding data storage capacity requirements of today and tomorrow. They are available in 5400- and 7200- RPM configurations with capacity offerings from 10 to 80 GB and beyond.

Support
No matter which capacity, all Maxtor hard drives are supported by our commitment to total customer satisfaction and our No Quibble Service® guarantee. One call – or a visit to our home page on the Internet (www.maxtor.com) – puts you in touch with either technical support or customer service. We’ll provide you the information you need quickly, accurately and in the form you prefer – a fax, a downloaded file or a conversation with a representative.

Manual Organization
This hard disk drive reference manual is organized in the following method:

Section 1 – Introduction
Section 2 – Product Description
Section 3 – Product Specifications
Section 4 – Handling and Installation
Section 5 – AT Interface Description
Section 6 – Host Software Interface
Section 7 – Interface Commands
Section 8 – Service and Support
Appendix – Glossary

Abbreviations

<table>
<thead>
<tr>
<th>ABBRV</th>
<th>DESCRIPTION</th>
<th>ABBRV</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATA</td>
<td>AT attachment</td>
<td>MB</td>
<td>megabyte</td>
</tr>
<tr>
<td>bpi</td>
<td>bits per inch</td>
<td>Mbits/sec</td>
<td>megabits per second</td>
</tr>
<tr>
<td>CHS</td>
<td>cylinder - head - sector</td>
<td>MB/sec</td>
<td>megabytes per second</td>
</tr>
<tr>
<td>db</td>
<td>decibels</td>
<td>MHz</td>
<td>megahertz</td>
</tr>
<tr>
<td>dBA</td>
<td>decibels, A weighted</td>
<td>ms</td>
<td>millisecond</td>
</tr>
<tr>
<td>DMA</td>
<td>direct memory access</td>
<td>MSB</td>
<td>most significant bit</td>
</tr>
<tr>
<td>ECC</td>
<td>error correction code</td>
<td>mV</td>
<td>millivolts</td>
</tr>
<tr>
<td>fci</td>
<td>flux changes per inch</td>
<td>ns</td>
<td>nanoseconds</td>
</tr>
<tr>
<td>G</td>
<td>acceleration</td>
<td>PIO</td>
<td>programmed input/output</td>
</tr>
<tr>
<td>GB</td>
<td>gigabyte</td>
<td>RPM</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>Hz</td>
<td>hertz</td>
<td>SPI</td>
<td>tracks per inch</td>
</tr>
<tr>
<td>KB</td>
<td>kilobyte</td>
<td>UDMA</td>
<td>ultra direct memory access</td>
</tr>
<tr>
<td>LBA</td>
<td>logical block address (ing)</td>
<td>µsec</td>
<td>microsecond</td>
</tr>
<tr>
<td>LSB</td>
<td>least significant bit</td>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>mA</td>
<td>milliamperes</td>
<td>W</td>
<td>watts</td>
</tr>
</tbody>
</table>
Conventions

If there is a conflict between text and tables, the table shall be accepted as being correct.

Key Words

The names of abbreviations, commands, fields and acronyms used as signal names are in all uppercase type (e.g., IDENTIFY DRIVE). Fields containing only one bit are usually referred to as the “name” bit instead of the “name” field.

Names of drive registers begin with a capital letter (e.g., Cylinder High register).

Numbering

Numbers that are not followed by a lowercase “b” or “h” are decimal values. Numbers that are followed by a lowercase “b” (e.g., 01b) are binary values. Numbers that are followed by a lowercase “h” (e.g., 3Ah) are hexadecimal values.

Signal Conventions

Signal names are shown in all uppercase type.

All signals are either high active or low active signals. A dash character (-) at the end of a signal name indicates that the signal is low active. A low active signal is true when it is below ViL and is false when it is above ViH. A signal without a dash at the end indicates that the signal is high active. A high active signal is true when it is above ViH and is false when it is below ViL.

When a signal is asserted, it means the signal is driven by an active circuit to its true state.

When a signal is negated, it means the signal is driven by an active circuit to its false state.

When a signal is released, it means the signal is not actively driven to any state. Some signals have bias circuitry that pull the signal to either a true or false state when no signal driver is actively asserting or negating the signal. These instances are noted under the description of the signal.
Product Description

Maxtor hard disk drives are 3.5-inch diameter random access storage devices which incorporate an on-board Ultra ATA/100 controller. High capacity is achieved by a balanced combination of high areal recording density and the latest data encoding and servo techniques.

Maxtor's latest advancements in electronic packaging and integration methods have lowered the drive's power consumption and increased its reliability. Advanced giant magneto-resistive read/write heads and a state-of-the-art head/disk assembly - using an integrated motor/spindle design - allow up to four disks in a 3.5-inch package.

Key Features

- ANSI ATA-5 compliant PIO Mode 5 interface (Enhanced IDE)
- Supports Ultra DMA Mode 5 for up to 100 MB/second data transfers
- 2 MB buffer with multi-adaptive cache manager
- 5400 RPM spin speed
- 15 ms average seek time
- Zone density and I.D.-less recording
- Outstanding shock resistance at 300 Gs
- High durability with 50K contact start/stop cycles
- Advanced multi-burst on-the-fly Error Correction Code (ECC)
- Extended data integrity with ECC protected data and fault tolerant servo synchronization fields
- Supports EPA Energy Star Standards (Green PC Friendly) with ATA powering savings commands
- Auto park and lock actuator mechanism
- Low power consumption
- S.M.A.R.T. Capability

Note: Maxtor defines one megabyte as 10E6 or one million bytes and one gigabyte as 10E9 or one billion bytes.
Product Features

Functional / Interface
Maxtor hard drives contain all necessary mechanical and electronic parts to interpret control signals and commands from an AT-compatible host computer. See Section 3 Product Specifications, for complete drive specifications.

Zone Density Recording
The disk capacity is increased with bit density management – common with Zone Density Recording. Each disk surface is divided into 16 circumferential zones. All tracks within a given zone contain a constant number of data sectors. The number of data sectors per track varies in different zones; the outermost zone contains the largest number of data sectors and the innermost contains the fewest.

Read / Write Multiple Mode
This mode is implemented per ANSI ATA/ATAPI-5 specification. Read/Write Multiple allows the host to transfer a set number of sectors without an interrupt request between them, reducing transfer process overhead and improving host performance.

Ultra ATA/100 - Mode 5
Maxtor hard drives fully comply with the new ANSI Ultra DMA protocol, which greatly improves overall AT interface performance by significantly improving burst and sustained data throughput.

Multi-word DMA (EISA Type B) - Mode 2
Supports multi-word Direct Memory Access (DMA) EISA Type B mode transfers.

Sector Address Translation
All Maxtor hard drives feature a universal translate mode. In an AT/EISA-class system, the drive may be configured to any specified combination of cylinders, heads and sectors (within the range of the drive’s formatted capacity). Maxtor hard drives power-up in a translate mode:

<table>
<thead>
<tr>
<th>MODELS</th>
<th>CYL</th>
<th>HD</th>
<th>SPT</th>
<th>MAX LBA</th>
<th>CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2R015H1</td>
<td>29</td>
<td>63</td>
<td>16</td>
<td>29 297 520</td>
<td>15.0 GB</td>
</tr>
<tr>
<td>2R010H1</td>
<td>19</td>
<td>853</td>
<td>16</td>
<td>20 011 824</td>
<td>10.2 GB</td>
</tr>
</tbody>
</table>

Logical Block Addressing
The Logical Block Address (LBA) mode can only be utilized in systems that support this form of translation. The cylinder, head and sector geometry of the drive, as presented to the host, differs from the actual physical geometry. The host AT computer may access a drive of set parameters: number of cylinders, heads and sectors per track, plus cylinder, head and sector addresses. However, the drive can’t use these host parameters directly because of zoned recording techniques. The drive translates the host parameters to a set of logical internal addresses for data access.

The host drive geometry parameters are mapped into an LBA based on this formula:

\[
\text{LBA} = (\text{HSCA} - 1) + \text{HHDA} \times \text{HSPT} + \text{HNHD} \times \text{HSPT} \times \text{HCYA}
\]

where:
- HSCA = Host Sector Address
- HHDA = Host Head Address
- HCYA = Host Cylinder Address
- HNHD = Host Number of Heads
- HSPT = Host Sectors per Track

The LBA is checked for violating the drive capacity. If it does not, the LBA is converted to physical drive cylinder, head and sector values. The physical address is then used to access or store the data on the disk and for other drive related operations.
Defect Management Zone (DMZ)
Each drive model has a fixed number of spare sectors per drive, all of which are located at the end of the drive. Upon detection of a bad sector that has been reassigned, the next sequential sector is used.

For example, if sector 3 is flagged, data that would have been stored there is “pushed down” and recorded in sector 4. Sector 4 then effectively becomes sector 3, as sequential sectors are “pushed down” across the entire drive. The first spare sector makes up for the loss of sector 3, and so maintains the sequential order of data. This push down method assures maximum performance.

On-the-Fly Hardware Error Correction Code (ECC)
14 symbols, single burst, guaranteed.

Software ECC Correction
24 symbols, single burst, guaranteed.

Automatic Park and Lock Operation
Immediately following power down, dynamic braking of the spinning disks delays momentarily allowing the read/write heads to move to an inner mechanical stop. A small fixed magnet holds the rotary actuator in place as the disk spins down. The rotary actuator is released only when power is again applied.

Cache Management
Buffer Segmentation
The data buffer is organized into two segments: the data buffer and the micro controller scratch pad. The data buffer is dynamically allocated for read and write data depending on the commands received. A variable number of read and write buffers may exist at the same time.

Read-Ahead Mode
Normally, this mode is active. Following a read request, disk read-ahead begins on the first sector and continues sequentially until the allocated buffer is full. If a read request is received during the read-ahead operation, the buffer is examined to determine if the request is in the cache. If a cache hit occurs, read-ahead mode continues without interruption and the host transfer begins immediately.

Automatic Write Reallocation (AWR)
This feature is part of the write cache and reduces the risk of data loss during deferred write operations. If a disk error occurs during the disk write process, the disk task stops and the suspect sector is reallocated to a pool of alternate sectors located at the end of the drive. Following reallocation, the disk write task continues until it is complete.

Write Cache Stacking
Normally, this mode is active. Write cache mode accepts the host write data into the buffer until the buffer is full or the host transfer is complete. A command complete interrupt is generated at the end of the transfer.

A disk write task begins to store the host data to disk. Host write commands continue to be accepted and data transferred to the buffer until either the write command stack is full or the data buffer is full. The drive may reorder write commands to optimize drive throughput.
Major HDA Components

Drive Mechanism
A brush-less DC direct drive motor rotates the spindle at 5400 RPM (±0.1%). The dynamically balanced motor/spindle assembly ensures minimal mechanical run-out to the disks. A dynamic brake provides a fast stop to the spindle motor upon power removal. The speed tolerance includes motor performance and motor circuit tolerances.

Rotary Actuator
All Maxtor hard drives employ a rotary voice coil actuator which consists of a moving coil, an actuator arm assembly and stationary magnets. The actuator moves on a low-mass, low-friction center shaft. The low friction contributes to fast access times and low power consumption.

Read/Write Electronics
An integrated circuit mounted within the sealed head disk assembly (near the read/write heads) provides up to eight head selection (depending on the model), read pre-amplification and write drive circuitry.

Read/Write Heads and Media
Low mass, low force giant magneto-resistive read/write heads record data on 3.5-inch diameter disks. Maxtor uses a sputtered thin film medium on all disks for Maxtor hard drives.

Air Filtration System
All Maxtor hard drives are assembled in a Class 100 controlled environment. Over the life of the drive, a 0.1 micron filter and breather filter located within the sealed head disk assembly (HDA) maintain a clean environment to the heads and disks. All Maxtor hard drives are designed to operate in a typical office environment with minimum environmental control.

Microprocessor
The microprocessor controls the following functions for the drive electronics:

- Command execution
- Cache management
- Data correction and error recovery
- Diagnostic execution
- Data sequencing
- Head positioning (including error recovery)
- Host interface
- Index detection
- Spin speed control
- Seeks
- Servo
- S.M.A.R.T.
Subsystem Configuration

Dual Drive Support

Two drives may be accessed via a common interface cable, using the same range of I/O addresses. The drives are jumpered as device 0 or 1 (Master/Slave), and are selected by the drive select bit in the Device/Head register of the task file.

All Task File registers are written in parallel to both drives. The interface processor on each drive decides whether a command written to it should be executed; this depends on the type of command and which drive is selected. Only the drive selected executes the command and activates the data bus in response to host I/O reads; the drive not selected remains inactive.

A master/slave relationship exists between the two drives: device 0 is the master and device 1 the slave. When the Master is closed (factory default, figure 2-1), the drive assumes the role of master; when open, the drive acts as a slave. In single drive configurations, the Master jumper must be closed.

Cable Select Option

CSEL (cable select) is an optional feature per ANSI ATA specification. Drives configured in a multiple drive system are identified by CSEL’s value:

- If CSEL is grounded, then the drive address is 0.
- If CSEL is open, then the drive address is 1.

Jumper Location / Configuration

![Jumper Configuration Diagram](image)

<table>
<thead>
<tr>
<th>JUMPER CONFIGURATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master/Slave</td>
</tr>
<tr>
<td>Only drive in single drive system*</td>
</tr>
<tr>
<td>Master drive in dual drive system*</td>
</tr>
<tr>
<td>Slave drive in dual drive system</td>
</tr>
<tr>
<td>Cable Select</td>
</tr>
<tr>
<td>Disabled*</td>
</tr>
<tr>
<td>Enabled</td>
</tr>
<tr>
<td>Cylinder Limitation</td>
</tr>
<tr>
<td>Disabled*</td>
</tr>
<tr>
<td>Enabled</td>
</tr>
<tr>
<td>Factory Reserved</td>
</tr>
</tbody>
</table>

Key: * = Default C = Closed (jumper installed) O = Open (no jumper)

Cylinder Limitation Jumper Description

On some older BIOS', primarily those that auto-configure the disk drive, a hang may occur. The Cylinder Limitation jumper reduces the capacity in the Identify Drive allowing large capacity drives to work with older BIOS'. The capacity reported when this jumper is closed will be as follows: drives less than or equal to 32GB will report 2.1GB. Drives greater than 32GB will report 32GB.
Product Specifications

Models and Capacities

<table>
<thead>
<tr>
<th>MODELS</th>
<th>2R015H1</th>
<th>2R010H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formatted Capacity (GByte LBA mode)</td>
<td>15.0</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Maxtor defines one gigabyte as 10E9 or one billion bytes.

Drive Configuration

<table>
<thead>
<tr>
<th>MODELS</th>
<th>2R015H1</th>
<th>2R010H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrated Interface</td>
<td>ATA-5 / Ultra ATA/100</td>
<td></td>
</tr>
<tr>
<td>Encoding Method</td>
<td>PRML (32,34) Parity Code</td>
<td></td>
</tr>
<tr>
<td>Interleave</td>
<td>1:1</td>
<td></td>
</tr>
<tr>
<td>Servo System</td>
<td>Embedded</td>
<td></td>
</tr>
<tr>
<td>Buffer Size / Type</td>
<td>2 MB SDRAM</td>
<td></td>
</tr>
<tr>
<td>Data Zones per Surface</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Data Surfaces / Heads</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Number of Disks</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Areal Density (Gbits/in(^2) max)</td>
<td>22.5</td>
<td></td>
</tr>
<tr>
<td>Track Density (tpi)</td>
<td>46,000</td>
<td></td>
</tr>
<tr>
<td>Recording Density (kbpi)</td>
<td>391 to 489</td>
<td></td>
</tr>
<tr>
<td>Bytes per Sector / Block</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>Sectors per Track</td>
<td>572 to 836</td>
<td></td>
</tr>
<tr>
<td>Sectors per Drive</td>
<td>29,297,520</td>
<td>20,011,824</td>
</tr>
</tbody>
</table>

Performance Specifications

<table>
<thead>
<tr>
<th>MODELS</th>
<th>2R015H1</th>
<th>2R010H1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seek Times (typical read, ms)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Track-to-Track</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Average (normal seek)</td>
<td>15.0</td>
<td></td>
</tr>
<tr>
<td>Full Stroke (normal seek)</td>
<td>24.5</td>
<td></td>
</tr>
<tr>
<td>Average Latency</td>
<td>5.51</td>
<td></td>
</tr>
<tr>
<td>Rotation Speed (RPM, ±0.01%)</td>
<td>5400</td>
<td></td>
</tr>
<tr>
<td>Controller Overhead</td>
<td><0.3</td>
<td></td>
</tr>
<tr>
<td>Data Transfer Speed (MBytes/sec max)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To/From Interface (UltraDMA - M5)</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>To/From Interface (PIO 4/Multi-word DMA M5)</td>
<td>16.7</td>
<td></td>
</tr>
<tr>
<td>To/From Media</td>
<td>49.75</td>
<td></td>
</tr>
<tr>
<td>Sustained - OD</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>Sustained - ID</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>Drive Ready Time (typical sec)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Physical Dimensions

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height (max mm)</td>
<td>17.5</td>
</tr>
<tr>
<td>Width (typical mm)</td>
<td>101.6</td>
</tr>
<tr>
<td>Length (max mm)</td>
<td>146.6</td>
</tr>
<tr>
<td>Weight (max kg)</td>
<td>0.453</td>
</tr>
</tbody>
</table>

Figure 3-1
Outline and Mounting Dimensions
Power Requirements

<table>
<thead>
<tr>
<th>MODE</th>
<th>12V (mA)</th>
<th>5V (mA)</th>
<th>POWER (w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spin-up (peak)</td>
<td>2050</td>
<td>350</td>
<td>--</td>
</tr>
<tr>
<td>Seek</td>
<td>260</td>
<td>350</td>
<td>6.0</td>
</tr>
<tr>
<td>Read/Write</td>
<td>260</td>
<td>350</td>
<td>5.4</td>
</tr>
<tr>
<td>Idle</td>
<td>190</td>
<td>250</td>
<td>4.0</td>
</tr>
<tr>
<td>Standby</td>
<td>30</td>
<td>125</td>
<td>1.4</td>
</tr>
<tr>
<td>Sleep</td>
<td>30</td>
<td>90</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Power Mode Definitions

Spin-up
The drive is spinning up following initial application of power and has not yet reached full speed.

Seek
A random access operation by the disk drive.

Read/Write
Data is being read from or written to the drive.

Idle
The drive is spinning, the actuator is parked and powered off and all other circuitry is powered on.
The drive is capable of responding to read commands within 40 ms.

Standby
The spin motor is not spinning. The drive will leave this mode upon receipt of a command that requires
 disk access. The time-out value for this mode is programmable. The buffer is active to accept write data.

Sleep
This is the lowest power state – with the interface set to inactive. A software or hardware reset is required
to return the drive to the Standby state.

EPA Energy Star Compliance
Maxtor Corporation supports the goals of the U.S. Environmental Protection Agency’s Energy Star program
to reduce the electrical power consumption of computer equipment.

Environmental Limits

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>OPERATING</th>
<th>NON-OPERATING/STORAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>5°C to 55°C</td>
<td>low temperature (-40°C)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>high temperature (71°C) per MIL-S 501.3, climatic category; hot-induce</td>
</tr>
<tr>
<td>Thermal Gradient</td>
<td></td>
<td>25°C per hour (maximum)</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>5% to 95% (non-condensing)</td>
<td></td>
</tr>
<tr>
<td>Wet Bulb</td>
<td></td>
<td>27°C (maximum)</td>
</tr>
<tr>
<td>Altitude (relative to sea level)</td>
<td>-200 to 10,000 feet</td>
<td>-200 to 40,000 feet</td>
</tr>
<tr>
<td>Acoustic Noise - sound power: bel (per ISO 7779, 10 microphone, at sea level)</td>
<td>Idle mode</td>
<td>3.4 avg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8 max</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal Seek mode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.4 avg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.8 max</td>
</tr>
</tbody>
</table>
Shock and Vibration

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>OPERATING</th>
<th>NON-OPERATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Shock</td>
<td>30 Gs, 2.0 ms, no errors</td>
<td>300 Gs, 2.0 ms, no damage</td>
</tr>
<tr>
<td>Rotational Shock</td>
<td></td>
<td>20,000 Rad/sec, 0.5 to 1.0 ms, no d</td>
</tr>
<tr>
<td>Random Vibration</td>
<td>10 to 45 Hz at 0.004 G/Hz, 48 to 62 Hz at 0.008 G/Hz, 65 to 300 Hz at 0.004 G/Hz, 301 to 500 Hz at 0.0006 G/Hz, no errors</td>
<td>PS: 10 Hz at .05 G/Hz, 20 Hz at .055 G/Hz, 300 Hz at .05 G/Hz, 301 Hz at .0014 G/Hz, 500 Hz at .001 G/Hz, 760 Hz at .001 G/Hz, 877 Hz at .003 G/Hz, 1000 Hz at .001 G/Hz, 1570 Hz at .001 G/Hz, 2000 Hz at .0001 G/Hz</td>
</tr>
<tr>
<td>Swept Sine Vibration</td>
<td>10 to 300 Hz, 1 G (0 to peak) amplitude, 1 octave per minute</td>
<td></td>
</tr>
</tbody>
</table>

Reliability Specifications

Annual Return Rate

<0.5%
Annual Return Rate (ARR) indicates the average against products shipped. ARR includes all reasons for returns (failures, handling damage, NDF), but does not include inventory credit returns.

Quality Acceptance Rate

<1,000 DPPM
The quality acceptance rate indicates the percentage of Maxtor products successfully installed by our customers, and/or the number of defective parts per million (DPPM) encountered during the entire installation process.

Start/Stop Cycles

>50,000
This indicates the average minimum cycles for reliable start/stop function.

Load/Unload Cycles

>100,000
This indicates the average minimum cycles for reliable load/unload function.

Data Reliability

<1 per 10E15 bits read
Data errors (non-recoverable). Average data error rate allowed with all error recovery features activated.

Component Design Life

5 years (minimum)
Component design life is defined as a.) the time period before identified wear-out mechanisms impact the failure rate, or b.) the time period up to the wear-out point when useful component life expires.
EMC/EMI

Radiated Electromagnetic Field Emissions - EMC Compliance
The hard disk drive mechanism is designed as a subassembly for installation into a suitable enclosure and is therefore not subject to Subpart J of Part 15 of FCC Rules (47CFR15) or the Canadian Department of Communications Radio Interference Regulations. Although not required, the disk mechanism has been tested within a suitable end-use product and found to comply with Class B limits of the FCC Rules and Regulations of the Canadian Department of Communications.

The CE Marking indicates conformity with the European Union Low Voltage Directive (73/23/EEC) when the disk mechanism is installed in a typical personal computer. Maxtor recommends that testing and analysis for EMC compliance be performed with the disk mechanism installed within the user's end-use application.

Canadian Emissions Statement
This digital apparatus does not exceed the Class B limits for radio noise emissions from digital apparatus as set out in the radio interference regulations of the Canadian department of communications.

Le present appareil numerique n'emet pas de bruit radioelectriques depassant les limites applicables aux appareils numeriques de Class B prescrites dans le reglement sur le brouillage radioelectrique edicte par le ministere des communications du Canada.

Safety Regulatory Compliance
All Maxtor hard drives comply with relevant product safety standards such as CE, CUL, TUV and UL rules and regulations. As delivered, Maxtor hard drives are designed for system integration before they are used.
Handling and Installation

Hard Drive Handling Precautions

- If the handling precautions are not followed, damage to the hard drive may result - which may void the warranty.

- During handling, **NEVER** drop, jar, or bump a drive. Handle the drive by its sides and avoid touching the printed circuit board assembly (PCBA).

- Hard drives are sensitive to electrostatic discharge (ESD) damage. Use proper ESD practices by grounding yourself and the computer system the hard drive will be installed in.

- Allow the hard drive to reach room temperature **BEFORE** installing it in your computer system.

- **NEVER** switch DC power onto the drive by plugging an electrically live DC source cable into the drive's connector. **NEVER** connect a live connector to the hard drive's IDE interface connector.

- **ELECTRICAL GROUNDING** - For proper operation, the drive must be securely fastened to a device bay that provides a suitable electrical ground to the drive baseplate.

Electro-Static Discharge (ESD)

To avoid some of the problems associated with ESD, Maxtor advises that anyone handling a disk drive use a wrist strap with an attached wire connected to an earth ground. Failure to observe these precautions voids the product warranty.

Manufacturers frequently experience “unsolved” component/hardware malfunctions often caused by ESD. To reduce the incidence of ESD-related problems, Maxtor recommends that any electronics manufacturing plans include a comprehensive ESD program, the basic elements and functions of which are outlined here:

<table>
<thead>
<tr>
<th>ESD Program Element</th>
<th>ESD Program Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management</td>
<td>Institute and maintain</td>
</tr>
<tr>
<td>Chief coordinator</td>
<td>Organize and enforce</td>
</tr>
<tr>
<td>Multi-department committee</td>
<td>Evaluate and improve</td>
</tr>
<tr>
<td>Employee training</td>
<td>Educate and inform</td>
</tr>
</tbody>
</table>

ESD program supplies typically include: wrist- and foot-worn grounding straps; counter-top and floor antistatic matting; wrist strap testers; ESD video and training materials. Sources for such supplies include:

- **Static Control Systems – 3M**
 - 225-4S, 3M Center
 - St. Paul, MN 55144

- **Charleswater**
 - 93 Border St.
 - West Newton, MA 02165-9990

Maxtor also offers a complete video training package, “Care and Handling of Maxtor Disk Drives.” Contact your Maxtor representative for details.
Unpacking and Inspection
Retain any packing material for reuse. Inspect the shipping container for evidence of damage in transit. Notify the carrier immediately in case of damage to the shipping container.

As they are removed, inspect drives for evidence of shipping damage or loose hardware. If a drive is damaged (and no container damage is evident), notify Maxtor immediately for drive disposition.

Figure 4-1
Multi-pack Shipping Container
Repacking
If a Maxtor drive requires return, repack it using Maxtor packing materials, including the antistatic bag.

Physical Installation

Recommended Mounting Configuration
The Maxtor hard drive design allows greater shock tolerance than that afforded by larger, heavier drives. The drive may be mounted in any attitude using four size 6-32 screws with 1/8-inch maximum penetration and a maximum torque of 5-inch pounds. See Figure 3-1 for mounting dimensions. Allow adequate ventilation to the drive to ensure reliable operation. See the following pages for specific installation steps.
Before You Begin

Important – Please Read

Please read this installation section completely before installing the Maxtor hard drive. It gives general information for installing a Maxtor hard drive in a *typical* computer system. If you don’t understand the installation steps, have a qualified computer technician install the hard drive.

Back up. Protect your Existing Data

Periodic backup of important data is always a good idea. Whenever your computer is on, there is the potential for losing data on your hard drive. This is especially true when running disk utilities or any software that directly manipulates your files. Maxtor recommends that you make a backup copy of the files on any existing hard drives prior to installing the new drive. If required, this data may then be copied to the Maxtor hard drive after it has been installed in the computer. Refer to your computer user’s manual for detailed data backup instructions.

Tools for Installation

The following tools are needed to install your new Maxtor hard drive:

- A small (#2) Phillips head screw driver
- Small needle-nose pliers or tweezers
- Your computer user’s manuals
- Operating system software

System Requirements

- IDE/AT interface
 - Maxtor recommends:
 - Drives less than or equal to 8.4 GB – 486 DX 66 MHz
 - Drives larger than 8.4 GB – Pentium-class processor

Operating System Requirements

- Drives less than or equal to 8.4 GB:
 - DOS 5.0 or higher
- Drives larger than 8.4 GB:
 - Installing as boot drive (Primary Master) requires full installation set of Windows 95/98 – not an update from DOS or Windows 3.x.
 - Installing as non-boot drive (Primary Slave, Secondary Master or Slave) requires Windows 95/98 on the boot drive.

Hook up

Maxtor recommends that you use the MaxBlast™ Plus software to create a customized installation guide for your system before physically installing your new hard drive. The information created by MaxBlast Plus relates to the following illustrations.

Boot the System with the MaxBlast Plus Diskette

Before physically installing the Maxtor hard drive, boot your system with the MaxBlast Plus diskette. It will assist you with the instructions in this section for a successful installation.

Configure the Drive Jumpers

The jumper configurations have three valid jumper settings – Master, Slave and Cable Select. Maxtor hard drives are always shipped with the Master jumper setting enabled.

Install the 5.25-inch Mounting Brackets

If the Maxtor hard drive will be mounted in a 5.25-inch device bay, you will need to attach 5.25-inch brackets to the hard drive. These brackets are not required if the drive is mounted in a 3.5-inch device bay.
Install the Hard Drive in a Device Bay

Refer to your computer user's manual for specific mounting information. Be sure to secure the drive to the device bay with all four screws.

Attach the Interface and Power Cables

Do not force or rock the connectors into their sockets on the hard drive. Push them in straight until they are seated.

Note: Maxtor Hard Drive Kits that carry an “H” in the kit number are Ultra ATA/100 compatible hard drives. A standard IDE cable can be used for drive installation; however, an Ultra ATA cable is required to achieve Ultra ATA/100 data transfers in Ultra ATA/100 compatible systems. Follow the illustration below for proper cable connections to the system and hard drive(s) when using this cable.

Attach an IDE interface connector to J1 on the Maxtor drive. Attach a power connector to J2 on the Maxtor drive. This connector is keyed and will only fit one way. Check all other cable connections before you power up. Striped/colored edge is pin 1.

Start up

Turn your system ON. During the system start up sequence, run the SETUP (BIOS) program. Newer systems usually display a message like “press DEL to enter Setup,” showing how to access the SETUP (BIOS) program.

Choose the device position where the Maxtor hard drive will be installed (Primary Master, Primary Slave, Secondary Master, Secondary Slave or their equivalents) and select the “Auto Detect” option. Save and exit the BIOS. The system will now boot. Boot to the MaxBlast™ Plus diskette.

Set up

MaxBlast Plus will guide you through the steps to prepare (partition and format) your new Maxtor hard drive. Once you have completed this step, your new Maxtor hard drive will be ready to use.

Note: Do not discard the MaxBlast Plus diskette once the installation is complete. The diskette contains Maxdiag, a diagnostic utility that is a separate program from the MaxBlast Plus installation software.
AT Interface Description

Interface Connector

All Maxtor hard drives have a 40-pin ATA interface connector mounted on the PCBA. The drive may connect directly to the host; or it can also accommodate a cable connection (maximum cable length: 18 inches).

Pin Description Summary

<table>
<thead>
<tr>
<th>PIN</th>
<th>SIGNAL</th>
<th>PIN</th>
<th>SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Reset -</td>
<td>02</td>
<td>Ground</td>
</tr>
<tr>
<td>03</td>
<td>DD7</td>
<td>04</td>
<td>DD8</td>
</tr>
<tr>
<td>05</td>
<td>DD6</td>
<td>06</td>
<td>DD9</td>
</tr>
<tr>
<td>07</td>
<td>DD5</td>
<td>08</td>
<td>DD10</td>
</tr>
<tr>
<td>09</td>
<td>DD4</td>
<td>10</td>
<td>DD11</td>
</tr>
<tr>
<td>11</td>
<td>DD3</td>
<td>12</td>
<td>DD12</td>
</tr>
<tr>
<td>13</td>
<td>DD2</td>
<td>14</td>
<td>DD13</td>
</tr>
<tr>
<td>15</td>
<td>DD1</td>
<td>16</td>
<td>DD14</td>
</tr>
<tr>
<td>17</td>
<td>DD0</td>
<td>18</td>
<td>DD15</td>
</tr>
<tr>
<td>19</td>
<td>Ground</td>
<td>20</td>
<td>(keypin)</td>
</tr>
<tr>
<td>21</td>
<td>DMARQ</td>
<td>22</td>
<td>Ground</td>
</tr>
<tr>
<td>23</td>
<td>DIOW -STOP</td>
<td>24</td>
<td>Ground</td>
</tr>
<tr>
<td>25</td>
<td>DIOR :HDMARDYHSTROBE</td>
<td>26</td>
<td>Ground</td>
</tr>
<tr>
<td>27</td>
<td>IORDY:DMARDYDSTROBE</td>
<td>28</td>
<td>CSEL</td>
</tr>
<tr>
<td>29</td>
<td>DMACK -</td>
<td>30</td>
<td>Ground</td>
</tr>
</tbody>
</table>
| 31 | INTRQ | 32 | I/O CS 16
| | | 33 | PD/AG - |
| 35 | DA0 | 34 | DA2 |
| 37 | CS0 - | 36 | CS1 - |
| 39 | DASP - | 38 | Ground |

Figure 5-1
Data Connector
Pin Description Table

<table>
<thead>
<tr>
<th>PIN NAME</th>
<th>PIN</th>
<th>I/O</th>
<th>SIGNAL NAME</th>
<th>SIGNAL DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESET</td>
<td>01</td>
<td>I</td>
<td>Host Reset</td>
<td>Reset signal from the host system. Active during power up and inactive after.</td>
</tr>
<tr>
<td>DD0</td>
<td>17</td>
<td>I/O</td>
<td>Host Data Bus</td>
<td>16 bit bi-directional data bus between host and drive. Lower 8 bits used for register and ECC byte transfers. All 16 bits used for data transfers.</td>
</tr>
<tr>
<td>DD1</td>
<td>15</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD2</td>
<td>13</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD3</td>
<td>11</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD4</td>
<td>09</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD5</td>
<td>07</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD6</td>
<td>05</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD7</td>
<td>03</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD8</td>
<td>04</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD9</td>
<td>06</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD10</td>
<td>08</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD11</td>
<td>10</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD12</td>
<td>12</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD13</td>
<td>14</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD14</td>
<td>16</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DD15</td>
<td>18</td>
<td>I/O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMARQ</td>
<td>21</td>
<td>O</td>
<td>DMA Request</td>
<td>This signal is used with DMACK for DMA transfers. By asserting this signal, the drive indicates that data is ready to be transferred to and from the host.</td>
</tr>
<tr>
<td>DIOW - STOP</td>
<td>23</td>
<td>I</td>
<td>Host I/O Write</td>
<td>Rising edge of Write strobe clocks data from the host data bus to a register on the drive.</td>
</tr>
<tr>
<td>DIOR - HDMDARY HSTROBE</td>
<td>25</td>
<td>I</td>
<td>Host I/O Read</td>
<td>Read strobe enables data from a register on the drive onto the host data bus. DMA ready during UltraDMA data in bursts. Data strobe during UltraDMA data out bursts.</td>
</tr>
<tr>
<td>IORDY DDMDARY DSTROBE</td>
<td>27</td>
<td>O</td>
<td>I/O Channel Ready</td>
<td>This signal may be driven low by the drive to insert wait states into host I/O cycles. DMA ready during UltraDMA data out bursts. Data strobe during UltraDMA data in bursts.</td>
</tr>
<tr>
<td>CSEL</td>
<td>28</td>
<td></td>
<td>Cable Select</td>
<td>Used for Master/Slave selection via cable. Requires special cabling on host system and installation of Cable Select jumper.</td>
</tr>
<tr>
<td>DMACK -</td>
<td>29</td>
<td>I</td>
<td>DMA Acknowledge</td>
<td>This signal is used with DMARQ for DMA transfers. By asserting this signal, the host is acknowledging the receipt of data or is indicating that data is available.</td>
</tr>
<tr>
<td>INTRQ</td>
<td>31</td>
<td>O</td>
<td>Host Interrupt Request</td>
<td>Interrupt to the host asserted when the drive requires attention from the host.</td>
</tr>
<tr>
<td>IOCS16</td>
<td>32</td>
<td>I/O</td>
<td>Device 16 bit I/O</td>
<td>Obsolete</td>
</tr>
<tr>
<td>PDAG -</td>
<td>34</td>
<td>I/O</td>
<td>Passed Diagnostic</td>
<td>Output by drive when in Slave mode; input to drive when in Master mode.</td>
</tr>
<tr>
<td>DA0</td>
<td>35</td>
<td>I</td>
<td>Host Address Bus</td>
<td>3 bit binary address from the host to select a register in the drive.</td>
</tr>
<tr>
<td>DA1</td>
<td>33</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DA2</td>
<td>36</td>
<td>I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CS0 -</td>
<td>37</td>
<td>I</td>
<td>Host Chip Select 0</td>
<td>Chip select from the host used to access the Command Block registers in the drive. This signal is a decode of I/O addresses 1F0 - 1F7 hex.</td>
</tr>
<tr>
<td>CS1 -</td>
<td>38</td>
<td>I</td>
<td>Host Chip Select 1</td>
<td>Chip select from the host used to access the Control registers in the drive. This signal is a decode of I/O addresses 3F6 - 3F7 hex.</td>
</tr>
<tr>
<td>DASP -</td>
<td>39</td>
<td>I/O</td>
<td>Drive Active/Drive 1 Present</td>
<td>Time-multiplexed, open collector output which indicates that a drive is active, or that device 1 is present.</td>
</tr>
<tr>
<td>GND</td>
<td>02</td>
<td>N/A</td>
<td>Ground</td>
<td>Signal ground.</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KEY</td>
<td>20</td>
<td>N/A</td>
<td>Key</td>
<td>Pin used for keying the interface connector.</td>
</tr>
</tbody>
</table>
PIO Timing

<table>
<thead>
<tr>
<th>Timing Parameters</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
<th>Mode 3</th>
<th>Mode 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0 Cycle Time (min)</td>
<td>600 ns</td>
<td>383 ns</td>
<td>240 ns</td>
<td>180 ns</td>
<td>120 ns</td>
</tr>
<tr>
<td>t1 Address valid to DIO-/-DIOW- setup (min)</td>
<td>70 ns</td>
<td>50 ns</td>
<td>30 ns</td>
<td>30 ns</td>
<td>25 ns</td>
</tr>
<tr>
<td>t2 DIO-/DIOW- 16-bit (min)</td>
<td>165 ns</td>
<td>125 ns</td>
<td>100 ns</td>
<td>80 ns</td>
<td>70 ns</td>
</tr>
<tr>
<td>t3 DIO-/-DIOW- recovery time (min)</td>
<td></td>
<td></td>
<td>70 ns</td>
<td>25 ns</td>
<td></td>
</tr>
<tr>
<td>t4 DIOW- data setup (min)</td>
<td>60 ns</td>
<td>45 ns</td>
<td>30 ns</td>
<td>30 ns</td>
<td>20 ns</td>
</tr>
<tr>
<td>t5 DIO- data hold (min)</td>
<td>30 ns</td>
<td>20 ns</td>
<td>15 ns</td>
<td>10 ns</td>
<td>10 ns</td>
</tr>
<tr>
<td>t6 DIOW- data hold (min)</td>
<td>50 ns</td>
<td>35 ns</td>
<td>20 ns</td>
<td>20 ns</td>
<td>20 ns</td>
</tr>
<tr>
<td>t7 DIO- data tristate (max)</td>
<td>30 ns</td>
<td>30 ns</td>
<td>30 ns</td>
<td>30 ns</td>
<td>30 ns</td>
</tr>
<tr>
<td>t8 DIO-/DIOW- to address valid hold (min)</td>
<td>20 ns</td>
<td>15 ns</td>
<td>10 ns</td>
<td>10 ns</td>
<td>10 ns</td>
</tr>
<tr>
<td>tRd Read Data Valid to IORDY active (min)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tA IORDY Setup Time</td>
<td>35 ns</td>
<td>35 ns</td>
<td>35 ns</td>
<td>35 ns</td>
<td>35 ns</td>
</tr>
<tr>
<td>tB IORDY Pulse Width (max)</td>
<td>1250 ns</td>
<td>1250 ns</td>
<td>1250 ns</td>
<td>1250 ns</td>
<td>1250 ns</td>
</tr>
</tbody>
</table>

![Figure 5-2](image-url)
PIO Data Transfer To/From Device
DMA Timing

<table>
<thead>
<tr>
<th>Timing Parameters</th>
<th>Mode 0</th>
<th>Mode 1</th>
<th>Mode 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t0</td>
<td>480 ns</td>
<td>150 ns</td>
<td>120 ns</td>
</tr>
<tr>
<td>tC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tJ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tZ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-3

Multi-word DMA Data Transfer
Ultra DMA Timing

<table>
<thead>
<tr>
<th>TIMING PARAMETERS (all times in nanoseconds)</th>
<th>MODE 0</th>
<th>MODE 1</th>
<th>MODE 2</th>
<th>MODE 3</th>
<th>MODE 4</th>
<th>MODE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>tCYC Cycle Time (from STROBE edge to STROBE edge)</td>
<td>112</td>
<td>73</td>
<td>54</td>
<td>39</td>
<td>25</td>
<td>16.8</td>
</tr>
<tr>
<td>tCHS Two cycle time (from rising edge to next rising edge or from falling edge to next falling edge of STROBE)</td>
<td>230</td>
<td>153</td>
<td>115</td>
<td>86</td>
<td>57</td>
<td>38</td>
</tr>
<tr>
<td>tDLA Data setup time (at recipient)</td>
<td>15</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>tDLH Data hold time (at recipient)</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4.6</td>
</tr>
<tr>
<td>tVLS Data valid setup time at sender (time from data bus being valid until STROBE edge)</td>
<td>70</td>
<td>48</td>
<td>31</td>
<td>20</td>
<td>6.7</td>
<td>4.8</td>
</tr>
<tr>
<td>tVLO Data valid hold time at sender (time from STROBE edge until data may go invalid)</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>6.2</td>
<td>4.8</td>
</tr>
<tr>
<td>tFS First STROBE (time for device to send first STROBE)</td>
<td>0</td>
<td>230</td>
<td>0</td>
<td>200</td>
<td>0</td>
<td>170</td>
</tr>
<tr>
<td>tIL Limited interlock time (time allowed between an action by one agent, either host or device, and the following action by the other agent)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>tUI Unlimited interlock time</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tZU Maximum time allowed for outputs to release</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>tZUK Minimum delay time required for output drivers turning on (from released state)</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>tENV Strobe to DMARDY envelope time (all control signal transitions are within the DMACK envelope by this much time)</td>
<td>70</td>
<td>20</td>
<td>70</td>
<td>20</td>
<td>70</td>
<td>20</td>
</tr>
<tr>
<td>tZAD Ready-to-final-STROBE time (no more STROBE edges may be sent this long after receiving DMARDY negation)</td>
<td>75</td>
<td>30</td>
<td>20</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>tAR Ready-to-pause time (time until a recipient may assume that the sender has paused after negation of DMARDY)</td>
<td>160</td>
<td>125</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>85</td>
</tr>
<tr>
<td>tEJGS Pull-up time before allowing IORDY to be released</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>tZIORDY Minimum time device shall wait before driving IORDY</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tACK Setup and hold times before assertion and negation of DMACK</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>tZAD Time from STROBE edge to STOP assertion when the sender is stopping</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 5 - 4
Initiating an Ultra DMA Data In Burst
Figure 5-5
Sustained Ultra DMA Data In Burst

Figure 5-6
Host Pausing an Ultra DMA Data In Burst
AT INTERFACE DESCRIPTION

Figure 5 - 7
Device Terminating an Ultra DMA Data In Burst

Figure 5 - 8
Host Terminating an Ultra DMA Data In Burst
Figure 5-9
Initiating an Ultra DMA Data Out Burst

Figure 5-10
Sustained Ultra DMA Data Out Burst
Figure 5-11
Device Pausing an Ultra DMA Data Out Burst

Figure 5-12
Host Terminating an Ultra DMA Data Out Burst
Figure 5-13
Device Terminating an Ultra DMA Data Out Burst
Host Software Interface

The host communicates with the drive through a set of controller registers accessed via the host’s I/O ports. These registers divide into two groups: the Task File, used for passing commands and command parameters and the Control/Diagnostic registers.

Task File Registers

The Task File consists of eight registers used to control fixed disk operations. The host accesses each register by the I/O port address shown in this Task File register map:

<table>
<thead>
<tr>
<th>I/O PORT</th>
<th>READ</th>
<th>WRITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1F0h</td>
<td>Data Register</td>
<td>Data Register</td>
</tr>
<tr>
<td>1F1h</td>
<td>Error Register</td>
<td>Features Register</td>
</tr>
<tr>
<td>1F2h</td>
<td>Sector Count</td>
<td>Sector Count</td>
</tr>
<tr>
<td>1F3h</td>
<td>Sector Number</td>
<td>Sector Number</td>
</tr>
<tr>
<td>1F4h</td>
<td>Cylinder Low</td>
<td>Cylinder Low</td>
</tr>
<tr>
<td>1F5h</td>
<td>Cylinder High</td>
<td>Cylinder High</td>
</tr>
<tr>
<td>1F6h</td>
<td>Drive/Head (SDH)</td>
<td>Drive/Head (SDH)</td>
</tr>
<tr>
<td>1F7h</td>
<td>Status Register</td>
<td>Command Register</td>
</tr>
</tbody>
</table>

Data Register

Provides access to the drive’s sector buffer for read and write operations. With the exception of ECC byte transfers (which, during Read long and Write long commands, are 8 bits wide), data transfers through the Data register are all 16 bits wide.

Error Register

A read-only register containing specific information regarding the previous command. Data interpretation differs depending on whether the controller is in operational or diagnostic mode. A power up, reset, software reset, or receipt of a diagnostic command sets the controller into diagnostic mode. This mode invalidates contents of the Status register. The contents of the Error register reflect a completion code.

Issuing any command (apart from a Diagnostic command) places the controller into operational mode. In operational mode, the Error register is valid only when the Error bit in the Status register is set. The bit definitions for operational mode follow:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ECC</td>
<td>0</td>
<td>IDNF</td>
<td>0</td>
<td>ABRT</td>
<td>TK0</td>
<td>AMNF</td>
</tr>
</tbody>
</table>

Interface CRC – An interface CRC error occurred during an Ultra DMA transfer.
Data ECC Error – An non-correctable ECC error occurred during a Read Sector command.
Firmware Problem – Indicates a firmware problem was detected, (e.g., invalid interrupt, divide overflow).
ID Not Found – Either a matching ID field not found, or a CRC error occurred.
Aborted Command – Invalid commands, write fault, no seek complete, or drive not ready.
Track 0 Error – Track 0 was not found during execution of a Restore command.
Address Mark Not Found – The Address Mark could not be found after an ID match.

Features Register

Enables or disables features through the Set Features command.
Sector Count Register
Holds the number of sectors to be sent during a Read or Write command, and the number of sectors per track during a Format command. A value of zero in this register implies a transfer of 256 sectors. A multi-sector operation decrements the Sector Count register. If an error occurs during such an operation, this register contains the remaining number of sectors to be transferred.

Sector Number Register
Holds the starting sector number for any disk operation. The register is updated as each sector is processed in a multi-sector operation.

Cylinder Number Registers
Two 8-bit Cylinder Number registers (Low and High) specify the starting cylinder for disk operation.

Device/Head Register
Used to specify the drive and head number to be operated on during any disk operations. Within the context of a Set Parameters command, this register specifies the maximum number of heads on the drive. Bit definitions follow:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>LBA Mode</td>
<td>LBA</td>
<td>Drive</td>
<td>Head</td>
<td>Head</td>
<td>Head</td>
<td>Head</td>
<td>Head</td>
</tr>
<tr>
<td>CONTENTS</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Select LBA Mode – Enabling this bit for commands not supported by LBA mode will abort the selected command. When set, the Task File register contents are defined as follows for the Read/Write and translate command:

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>LBA BITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sector Number</td>
<td>0 - 7</td>
</tr>
<tr>
<td>Cylinder Low</td>
<td>8 - 15</td>
</tr>
<tr>
<td>Cylinder High</td>
<td>16 - 23</td>
</tr>
<tr>
<td>Drive/Head</td>
<td>24 - 27</td>
</tr>
</tbody>
</table>

Drive Select – Set to 0 to select the master drive; set to 1 to select the slave drive.

Head Select – Specifies the binary coded address of the head to be selected.

Status Register
Contains results of the last command executed, and the drive’s status. The other seven Task File registers may be read only when bit 7 (BUSY) of the Status register is low. Reading any of the Task File registers when BUSY is high returns the value of the Status register. Reading the Status register also clears any interrupt request to the host. Bit definitions follow:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSY</td>
<td>DRDY</td>
<td>DF</td>
<td>DSC</td>
<td>DRQ</td>
<td>0</td>
<td>0</td>
<td>ERR</td>
</tr>
<tr>
<td>Controller Busy</td>
<td>Device Ready</td>
<td>Device Fault</td>
<td>Device Seek Complete</td>
<td>Device Data Request</td>
<td>Error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Controller Busy – Goes active when a command is written to the Command register, indicating controller task execution. After a command, this bit resets.

Device Ready – Indicates that the drive is ready for commands. If drive ready is not present, all commands abort.

Device Fault – Indicates the drive’s detection of a write fault condition, causing all commands to abort.

Device Seek Complete – Signifies a seek completion, and that the drive is on track.

Data Request – Indicates that the drive’s sector buffer is ready for data transfer.

Error – The Error bit sets when the previous command has completed with a non-recoverable error.
Command Register

Contains code for the command to be performed. Additional command information should be written to the task file before the Command register is loaded. When this register is written, the BUSY bit in the Status register sets, and interrupt request to the host clears; invalid commands abort. (Detailed information on interface commands is given in Section 7.) Hex values for valid command formats follow:

Read Commands

- **Read Sector(s)**
 - 20h Normal reads; retries enabled
 - 21h Normal reads; retries disabled
 - 22h Read Long; retries enabled
 - 23h Read Long; retries disabled
- **Read Verify Sector(s)**
 - 40h Retries enabled
 - 41h Retries disabled
- **Read Sector Buffer**
 - E4h
- **Read Multiple**
 - C4h
- **Read DMA**
 - C8h
 - C9h No retries

Write Commands

- **Write Sector(s)**
 - 30h Normal writes; retries enabled
 - 31h Normal writes; retries disabled
 - 32h Write Long; retries enabled
 - 33h Write Long; retries disabled
- **Write Verify Sector(s)**
 - 3Ch
- **Write Sector Buffer**
 - E8h
- **Write Multiple**
 - C5h
- **Write DMA**
 - CAh
 - CBh No retries

Mode Set/Check Commands

- **Set Features**
 - EFh
- **Set Multiple Mode**
 - C6h
- **Read Native Max Address**
 - F8h
- **Set Max Mode**
 - F9h

Power Mode Commands

- **Standby Immediate**
 - 94/E0h Stops drive spindle; do not change time-out value
- **Idle Immediate**
 - 95/E1h Starts spindle; do not change time-out value
- **Standby**
 - 96/E2h Stops spindle; change time-out value
- **Idle**
 - 97/E3h Starts spindle; change time-out value
- **Check Power Mode**
 - 98/E5h
- **Set Sleep Mode**
 - 99/E6h

Initialization Commands

- **Identify Drive**
 - ECh
- **Initialize Drive Parameters**
 - 91h
- **Re-calibrate**
 - 1xh

Seek, Format, and Diagnostic Commands

- **Seek**
 - 7xh
- **Format Track**
 - 50h
- **Execute Drive Diagnostic**
 - 90h

S.M.A.R.T. Commands

- **Execute S.M.A.R.T.**
 - B0h
Summary

<table>
<thead>
<tr>
<th>Command Name</th>
<th>Command Code</th>
<th>Parameters Used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recalibrate</td>
<td>b7 b6 b5 b4 b3 b2 b1 b0</td>
<td>F SC SN C SDH</td>
</tr>
<tr>
<td>Read Sector(s)</td>
<td>0 0 1 0 0 0 L x</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Read DMA</td>
<td>1 1 0 0 1 0 0 x</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Write Sector(s)</td>
<td>0 0 1 1 0 0 L x</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Write DMA</td>
<td>1 1 0 0 1 0 1 x</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Write Verify Sector(s)</td>
<td>0 0 1 1 1 1 0 0</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Read Verify Sector(s)</td>
<td>0 0 1 0 0 0 0 x</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Format Track</td>
<td>0 1 0 1 0 0 0 0</td>
<td>N N N Y Y</td>
</tr>
<tr>
<td>Seek</td>
<td>0 1 1 1 x x x x</td>
<td>N N Y Y Y</td>
</tr>
<tr>
<td>Execute Diagnostic</td>
<td>1 0 0 1 0 0 0 0</td>
<td>N N N N N</td>
</tr>
<tr>
<td>Initialize Parameters</td>
<td>1 0 0 1 0 0 0 1</td>
<td>N Y N N Y</td>
</tr>
<tr>
<td>Read Sector Buffer</td>
<td>1 1 1 0 0 1 0 0</td>
<td>N N N N N</td>
</tr>
<tr>
<td>Write Sector Buffer</td>
<td>1 1 1 0 1 0 0 0</td>
<td>N N N N N</td>
</tr>
<tr>
<td>Identify Drive</td>
<td>1 1 1 1 0 1 1 0</td>
<td>N N N N N</td>
</tr>
<tr>
<td>Set Features</td>
<td>1 1 1 0 1 1 1 1</td>
<td>Y N N N D</td>
</tr>
<tr>
<td>Read Multiple</td>
<td>1 1 0 0 0 1 0 0</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Write Multiple</td>
<td>1 1 0 0 0 1 0 1</td>
<td>N Y Y Y Y</td>
</tr>
<tr>
<td>Set Multiple Mode</td>
<td>1 1 0 0 0 1 1 0</td>
<td>N Y N N D</td>
</tr>
<tr>
<td>Read Native Max Address</td>
<td>1 1 1 1 1 0 0 0</td>
<td>N N N N N</td>
</tr>
<tr>
<td>Set Max</td>
<td>1 1 1 1 1 0 1 0</td>
<td>N Y Y Y Y</td>
</tr>
</tbody>
</table>
Control Diagnostic Registers

These I/O port addresses reference three Control/Diagnostic registers:

<table>
<thead>
<tr>
<th>I/O PORT</th>
<th>READ</th>
<th>WRITE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3F6h</td>
<td>Alternate Status</td>
<td>Fixed Disk Control</td>
</tr>
<tr>
<td>3F7h</td>
<td>Digital Input</td>
<td>Not used</td>
</tr>
</tbody>
</table>

Alternate Status Register

Contains the same information as the Status register in the Task File. However, this register may be read at any time without clearing a pending interrupt.

Device Control Register

Contains the software Reset and Enable bit to enable interrupt requests to the host. Bit definitions follow:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>SRST</td>
<td>EN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reset</td>
<td>IRQ Enable</td>
</tr>
</tbody>
</table>

- **Reset** – Setting the software Reset bit holds the drive in the reset state. Clearing the bit re-enables the drive. The software Reset bit must be held active for a minimum of 5 µsec.

- **IRQ Enable** – Setting the Interrupt Request Enable to 0 enables the IRQ 14 signal to the host. When this bit is set to 1, IRQ14 is tri-stated, and interrupts to the host are disabled. Any pending interrupt occurs when the bit is set to 0. The default state of this bit after power up is 0 (interrupt enabled).

Digital Input Register

Contains information about the state of the drive. Bit definitions follow:

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>-WG</td>
<td>-HS3</td>
<td>-HS2</td>
<td>-HS1</td>
<td>-HS0</td>
<td>-DS1</td>
</tr>
<tr>
<td>Reserved</td>
<td>Write</td>
<td>Gate</td>
<td>Head</td>
<td>Head</td>
<td>Head</td>
<td>Head</td>
<td>Drive</td>
</tr>
<tr>
<td></td>
<td>Select 3</td>
<td>Select 2</td>
<td>Select 1</td>
<td>Select 0</td>
<td>Select 1</td>
<td>Select 0</td>
<td></td>
</tr>
</tbody>
</table>

Bit 7 of the host data bus is not driven when this register is read.

- **Write Gate** – Reflects the state of the active low write gate signal on the drive.

- **Head Select 3 through Head Select 0** – Represents the ones complement of the currently selected head number.

- **Drive Select 1** – Is 0 if drive 1 selected; 1 otherwise.

- **Drive Select 0** – Is 0 if drive 0 selected; 1 otherwise.
Reset and Interrupt Handling

Reset Handling
One of three different conditions may cause a reset: power on, hardware reset or software reset. All three cause the interface processor to initialize itself and the Task File registers of the interface. A reset also causes a set of the Busy bit in the Status register. The Busy bit does not clear until the reset clears and the drive completes initialization. Completion of a reset operation does not generate a host interrupt.

Task File registers are initialized as follows:

- Error: 1
- Sector Count: 1
- Sector Number: 1
- Cylinder Low: 0
- Cylinder High: 0
- Drive/Head: 0

Interrupt Handling
The drive requests data transfers to and from the host by asserting its IRQ 14 signal. This signal interrupts the host if enabled by bit 1 (IRQ enable) of the Fixed Disk Control register.

Clear this interrupt by reading the Status register, writing the Command register, or by executing a host hardware or software reset.
Interface Commands

The following section describes the commands (and any parameters necessary to execute them), as well as Status and Error register bits affected.

Read Commands
- Read Sector(s)
- Read Verify Sector(s)
- Read Sector Buffer
- Read DMA
 - Multi-word DMA
 - Ultra DMA
- Read Multiple
- Set Multiple

Write Commands
- Write Sector(s)
- Write Verify Sector(s)
- Write Sector Buffer
- Write DMA
 - Multi-word DMA
 - Ultra DMA
- Write Multiple

Mode Set/Check Commands
- Set Features Mode
- Set Multiple Mode
- Set Max Mode
- Read Native Max Address

Power Mode Commands
- Standby Immediate
- Idle Immediate
- Standby
- Idle
- Check Power Mode
- Set Sleep Mode

Initialization Commands
- Identify Drive
- Initialize Drive Parameters
- S.M.A.R.T.
Read Commands

Read Sector(s)
Reads from 1 to 256 sectors, as specified in the Command Block, beginning at the specified sector. (A sector count of 0 requests 256 sectors.) Immediately after the Command register is written, the drive sets the BSY bit and begins execution of the command. If the drive is not already on the desired track, an implied seek is performed.

Once at the desired track, the drive searches for the data address mark of the requested sector. The data address mark must be recognized within a specified number of bytes, or the Data Address Mark Not Found error will be reported. Assuming the data address mark is found:

1. The data field is read into the sector buffer.
2. Error bits are set (if an error was encountered).
3. The DRQ bit is set.
4. An interrupt is generated.

The DRQ bit is always set, regardless of the presence or absence of an error condition after the sector. Upon command completion, the Command Block registers contain the numbers of the cylinder, head and sector of the last sector read. Back-to-back sector read commands set DRQ and generate an interrupt when the sector buffer is filled at the completion of each sector. The drive is then ready for the data to be read by the host. DRQ is reset and BSY is set immediately when the host empties the sector buffer.

If an error occurs during Read Sector commands, the read terminates at the sector where the error occurred. The host may then read the Command Block to determine the nature of that error, and the sector where it happened. If the error type is a correctable or a non-correctable data error, the flawed data is loaded into the sector buffer.

A Read Long command sets the Long bit in the command code and returns the data and the ECC bytes in the data field of the specified sector. During a Read Long, the drive does not check the ECC bytes to determine if there has been a data error. The Read Long command is limited to single sector requests.

Read Verify Sector(s)
Identical to the Read Sector(s) command, except that:
1. DRQ is never set,
2. No data is transferred back to the host and
3. The long bit is not valid.
Read DMA

Multi-word DMA

Identical to the Read Sector(s) command, except that
1. The host initializes a slave-DMA channel prior to issuing the command,
2. Data transfers are qualified by DMARQ and are performed by the slave-DMA channel and
3. The drive issues only one interrupt per command to indicate that data transfer has terminated and status is available.

Ultra DMA

With the Ultra DMA Read protocol, the control signal (DSTROBE) that latches data from DD(15:0) is generated by the devices which drives the data onto the bus. Ownership of DD(15:0) and this data strobe signal are given DSTROBE to the drive during an Ultra DMA data in burst.

During an Ultra DMA Read burst, the drive always moves data onto the bus, and, after a sufficient time to allow for propagation delay, cable settling, and setup time, the sender shall generate a DSTROBE edge to latch the data. Both edges of DSTROBE are used for data transfers.

Any unrecoverable error encountered during execution of a Read DMA command terminates data transfer after the transfer of all sectors prior to the sector where the error was detected. The sector in error is not transferred. The drive generates an interrupt to indicate that data transfer has terminated and status is available. The error posting is identical to the Read Sector(s) command.

Read Multiple

Performs similarly to the Read Sector(s) command, except that for each READ MULTIPLE command data transfers are multiple sector blocks and the Long bit is not valid.

Execution is also similar to that of the READ SECTOR(S) command, except that:
1. Several sectors are transferred to the host as a block, without intervening interrupts.
2. DRQ qualification of the transfer is required only at the start of each block, not of each sector.

The block count consists of the number of sectors to be transferred as a block. (The block count is programmed by the Set Multiple Mode command, which must be executed prior to the Read Multiple command.) READ LONG command is limited to single sector requests.

When the Read Multiple command is issued, the Sector Count register contains the number of sectors requested — not the number of blocks or the block count. If the number of sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. This final, partial block transfer is for N sectors, where N = (sector count) modulo (block count)

The Read Multiple operation will be rejected with an Aborted Command error if attempted:
1. Before the Set Multiple Mode command has been executed, or
2. When Read Multiple commands are disabled.

The controller reports disk errors encountered during Read Multiple commands at the start of the block or partial block transfer. However, DRQ still sets, and the transfer occurs normally, along with the transfer of any corrupt data. Remaining block data from the following the sector in error is not valid.

If the Sector Count register contains 0 when the Set Multiple Mode command is issued, Read Multiple and Write Multiple commands are disabled; no error is returned. Once the appropriate action has been taken, the controller resets BSY and generates an interrupt. At power up, or after a hardware or software reset, Read Multiple and Write Multiple commands are disabled by default.
Set Multiple Mode

Enables the controller to perform Read and Write Multiple operations, and establishes the block count for these commands. Before issuing this command, the Sector Count register should be loaded with the number of sectors per block. The drives support block sizes of 2, 4, 8 and 16 sectors.

When this command is received, the controller sets BSY and examines the Sector Count register contents. If they contain a valid and supported block count value, that value is loaded for all subsequent Read and Write Multiple commands, and execution of those commands is enabled. An invalid and unsupported block count in the register results in an Aborted Command error and disallows Read Multiple and Write Multiple commands.

Write Commands

Write Sector(s)

Writes from 1 to 256 sectors, beginning at a sector specified in the Command Block. (A sector count of 0 requests 256 sectors.)

When the Command register is written, the drive sets the DRQ bit and waits for the host to fill the sector buffer with the data to be written. An interrupt is not generated to start the first buffer fill operation.

Once the buffer is full, the drive resets DRQ, sets BSY, and begins command execution. If the drive is not already on the desired track, an implied seek is performed.

The data loaded in the buffer is written to the data field of the sector, followed by the ECC bytes. Upon command completion, the Command Block registers contain the cylinder, head and sector number of the last sector written. The next time the buffer is ready to be filled during back-to-back Write Sector commands, DRQ is set and an interrupt is generated.

After the host fills the buffer, DRQ is reset and BSY is set. If an error occurs, Write Sector operations terminate at the sector containing the error.

The Command Block registers then contain the numbers of the cylinder, head and sector where the error occurred. The host may read the Command Block to determine the nature of that error, and on which sector it happened. A Write Long may be executed by setting the Long bit in the command code. The Write Long command writes the data and the ECC bytes directly from the sector buffer; the drive itself does not generate the ECC bytes. Restrict Write Long commands to PIO Mode 0.

Write Verify Sector(s)

Identical to the Write Sector(s) command, except that the requested sectors are verified immediately after being written. The verify operation reads (without transferring), and checks for data errors. Any errors encountered during this operation are reported.

Write Sector Buffer

Allows the host to overwrite the contents of the drive’s sector buffer with a selected data pattern. When this command is received, the drive:

1. Sets BSY,
2. Sets up the sector buffer for a write operation,
3. Sets DRQ,
4. Resets BSY and
5. Generates an interrupt.

The host may then write up to 256 words of data to the buffer. A disk write task begins to store the host data to disk. Host write commands continue to be accepted and data transferred to the buffer until either the write command stack is full or the data buffer is full. The drive may reorder write commands to optimize drive throughput.
Write Multiple

Performs similarly to the Write Sector(s) command, except that:

1. The controller sets BSY immediately upon receipt of the command,
2. Data transfers are multiple sector blocks and
3. The Long bit and Retry bit is not valid.

Command execution differs from Write Sector(s) because:

1. Several sectors transfer to the host as a block without intervening interrupts.
2. DRQ qualification of the transfer is required at the start of the block, not on each sector.

The block count consists of the number of sectors to be transferred as a block and is programmed by the Set Multiple Mode command, which must be executed prior to the Write Multiple command. When the Write Multiple command is issued, the Sector Count register contains the number of sectors requested — not the number of blocks or the block count.

If the number of sectors is not evenly divisible by the block count, as many full blocks as possible are transferred, followed by a final, partial block transfer. This final, partial block transfer is for \(N = \left(\text{sector count} \mod \text{block count} \right) \) sectors.

The Write Multiple operation will be rejected with an Aborted Command error if attempted:

1. Before the Set Multiple Mode command has been executed, or
2. When Write Multiple commands are disabled.

All disk errors encountered during Write Multiple commands report after the attempted disk write of the block or partial block in which the error occurred.

The write operation ends with the sector in error, even if it was in the middle of a block. When an error occurs, subsequent blocks are not transferred. When DRQ is set at the beginning of each full and partial block, interrupts are generated.

Write DMA

Multi-word DMA

Identical to the Write Sector(s) command, except that:

1. The host initializes a slave-DMA channel prior to issuing the command,
2. Data transfers are qualified by DMARQ and are performed by the slave-DMA channel and
3. The drive issues only one interrupt per command to indicate that data transfer has terminated at status is available.

Ultra DMA

With the Ultra DMA Write protocol, the control signal (HSTROBE) that latches data from DD(15:0) is generated by the devices which drives the data onto the bus. Ownership of DD(15:0) and this data strobe signal are given to the host for an Ultra DMA data out burst.

During an Ultra DMA Write burst, the host always moves data onto the bus, and, after a sufficient time to allow for propagation delay, cable settling, and setup time, the sender shall generate a HSTROBE edge to latch the data. Both edges of HSTROBE are used for data transfers.

Any error encountered during Write DMA execution results in the termination of data transfer. The drive issues an interrupt to indicate that data transfer has terminated and status is available in the error register. The error posting is the same as that of the Write Sector(s) command.
Mode Set/Check Commands

Set Features Mode

Enables or disables features supported by the drive. When the drive receives this command it:

1. Sets BSY,
2. Checks the contents of the Features register,
3. Clears BSY and
4. Generates an interrupt.

If the value of the register is not a feature supported by the drive, the command is aborted.

The acceptable values in the Features register are defined as follows:

<table>
<thead>
<tr>
<th>VALUE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>02h</td>
<td>Enabled Write Cache</td>
</tr>
<tr>
<td>03h</td>
<td>Set Transfer Mode based on value in Sector Count register</td>
</tr>
<tr>
<td>05h</td>
<td>Enable Advanced Power Management</td>
</tr>
<tr>
<td>42h</td>
<td>Enable Automatic Acoustic Management. The sector count register contains the Automatic Acoustic Management level.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SECTOR LEVEL</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFh</td>
<td>Maxtor specific</td>
</tr>
<tr>
<td>FEh</td>
<td>Maximum performance</td>
</tr>
<tr>
<td>80h-8DH</td>
<td>Intermediate acoustic management levels</td>
</tr>
<tr>
<td>80h</td>
<td>Minimum acoustic emanation level</td>
</tr>
<tr>
<td>00h-7FH</td>
<td>reserved</td>
</tr>
<tr>
<td>44h</td>
<td>Length of data appended on Read Long/Write Long commands specified in the Identify Device information</td>
</tr>
<tr>
<td>55h</td>
<td>Disable Read Look-ahead feature</td>
</tr>
<tr>
<td>66h</td>
<td>Disable reverting to Power-on defaults</td>
</tr>
<tr>
<td>82h</td>
<td>Disable Write Cache</td>
</tr>
<tr>
<td>85h</td>
<td>Disable Advanced Power Management</td>
</tr>
<tr>
<td>AAh</td>
<td>Enable Read Look-ahead feature</td>
</tr>
<tr>
<td>BBh</td>
<td>4 bytes of Maxtor specific data appended on Read Long/Write Long commands</td>
</tr>
<tr>
<td>C2h</td>
<td>Disable Automatic Acoustic Management</td>
</tr>
<tr>
<td>CCh</td>
<td>Enable reverting to Power-on defaults</td>
</tr>
</tbody>
</table>
Read Native Max Address

This command returns the native maximum address. The native maximum address is the highest address accepted by the drive in the factory default condition. The native maximum address is the maximum address that is valid when using the SET MAX ADDRESS command.

Set Max

Individual SET MAX commands are identified by the value placed in the Features register. After successful command completion, all read and write access attempts to addresses greater than specified by the successful SET MAX ADDRESS command are rejected with an IDNF error. IDENTIFY DEVICE response words 1, 54, 57, 60 and 71 will reflect the maximum address set with this command.

<table>
<thead>
<tr>
<th>VALUE</th>
<th>COMMAND</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>obsolete</td>
</tr>
<tr>
<td>01h</td>
<td>Set Max Set Password</td>
</tr>
<tr>
<td>02h</td>
<td>Set Max Lock</td>
</tr>
<tr>
<td>03h</td>
<td>Set Max Unlock</td>
</tr>
<tr>
<td>04h</td>
<td>Set Max Freeze Lock</td>
</tr>
<tr>
<td>05h-Fh</td>
<td>reserved</td>
</tr>
</tbody>
</table>

Set Max Password

This sub-command requests a transfer of a single sector of data from the host. The password is retained by the drive until the next power cycle.

Set Max Lock

After this sub-command is completed any other SET MAX commands except SET MAX UNLOCK and SET MAX FREEZE LOCK are rejected. The drive remains in this state until a power cycle or the acceptance of a SET MAX UNLOCK or SET MAX FREEZE LOCK command.

Set Max Unlock

This sub-command requests a transfer of a single sector of data from the host. The password supplied in the sector of data transferred will be compared with the stored SET MAX password.

If the password compare fails, then the drive returns command aborted and decrements the unlock counter. On the acceptance of the SET MAX LOCK command, this counter is set to a value of five and will be decremented for each password mismatch when SET MAX UNLOCK is issued and the drive is locked. When this counter reaches zero, then the SET MAX UNLOCK command will return command aborted until a power cycle.

If the password compare matches, then the drive will make a transition to the Set_Max_Unlocked state and all SET MAX commands will be accepted.

Set Max Freeze Lock

After sub-command completion any subsequent SET MAX commands are rejected. Commands disabled by SET MAX FREEZE LOCK are:

- Set Max Address
- Set Max Set Password
- Set Max Lock
- Set Max Unlock
Power Mode Commands

Standby Immediate – 94h/E0h
Spin down and do not change time out value. This command will spin the drive down and cause the drive to enter the STANDBY MODE immediately. If the drive is already spun down, the spin down sequence is not executed.

Idle Immediate – 95h/E1h
Spin up and do not change time out value. This command will spin up the spin motor if the drive is spun down, and cause the drive to enter the IDLE MODE immediately. If the drive is already spinning, the spin up sequence is not executed. The actuator is parked and some circuits are powered off.

Standby – 96h/E2h
Spin down and change time out value. This command will spin the drive down and cause the drive to enter the STANDBY MODE immediately. If the drive is already spun down, the spin down sequence is not executed. A non-zero value placed in the sector count register will enable the Automatic Power Down sequence. The timer will begin counting down when the drive returns to the IDLE MODE. A value of zero placed in the sector count register will disable the Automatic Power Down sequence.

Idle – 97h/E3h
Spin up and change time out value. This command will spin-up the spin motor if the drive is spun-down. If the drive is already spinning, the spin up sequence is not executed. A non-zero value placed in the Sector Count register will enable the Automatic Power Down sequence and their timer will begin counting down immediately. A value of zero placed in the Sector Count register will disable the Automatic Power Down sequence. The actuator is parked and some circuits are powered off.

<table>
<thead>
<tr>
<th>TIMER VALUE</th>
<th>TIME-OUT PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Time-out disabled</td>
</tr>
<tr>
<td>1 - 240</td>
<td>(value * 5) seconds</td>
</tr>
<tr>
<td>241 - 251</td>
<td>(value - 240) * 30 minutes</td>
</tr>
<tr>
<td>252</td>
<td>21 minutes</td>
</tr>
<tr>
<td>253</td>
<td>Vendor unique period = 10 hours</td>
</tr>
<tr>
<td>254</td>
<td>Reserved</td>
</tr>
<tr>
<td>255</td>
<td>21 minutes, 15 seconds</td>
</tr>
</tbody>
</table>

Check Power Mode – 98h/E5h
This command returns a code in the Sector Count register that determines the current Power Mode status of the drive. If the drive is in, going to, or recovering from the STANDBY MODE the drive sets the Sector Count register to 00h. If the drive is in the IDLE MODE or ACTIVE MODE, the drive sets the Sector Count register to FFh.

Set Sleep Mode – 99h/E6h
This command will spin the drive down and cause the drive to enter the SLEEP MODE immediately. If the drive is already spun down, the spin down sequence is not executed.

Note: The only way to recover from SLEEP MODE is with a software reset or a hardware reset.
Default Power-on Condition

The drive's default power on condition is the ACTIVE MODE.

Upon receiving a Power Mode command, except the SLEEP MODE command, the drive sets BSY and performs the requested power operation. Once the requested Power Mode change has begun, the drive resets BSY and generates an interrupt - without waiting for the drive to spin up or spin down. Upon receiving a SLEEP MODE command the drive is spun down, and when it is stopped, the drive resets BSY and generates an interrupt.

When enabling the Automatic Power Down sequence, the value placed in the Sector Count register is multiplied by five seconds to obtain the Time-out Interval value. If no drive commands are received from the host within the Time-out Interval, the drive automatically enters the STANDBY mode. The minimum value is 5 seconds.

While the drive is in STANDBY MODE, any commands received from the host are accepted and executed as they would in normal operation, except that the spin motor is started if required to execute a disk command. Under these conditions, the drive will set BSY when command processing would normally begin and will leave BSY set until the drive comes up to speed and the disk command can be executed. Disk commands issued while the drive is in STANDBY MODE, restarts the Time-out Interval after completing the command. A reset must be issued before attempting to issue any commands while the drive is in SLEEP MODE.
Initialization Commands

Identify Drive

Allows the host to receive parameter information from the drive.
When the command is received, the drive:

1. Sets BSY,
2. Stores the required parameter information in the sector buffer,
3. Sets the DRQ bit and
4. Generates an interrupt.

The host may then read the information out of the sector buffer. Parameter words in the buffer follow.
Note that all reserved bits or words should be zeroes.

<table>
<thead>
<tr>
<th>WORD</th>
<th>CONTENT DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>General configuration</td>
</tr>
<tr>
<td></td>
<td>15 = device (0 = ATA device, 1 = ATAPI)</td>
</tr>
<tr>
<td></td>
<td>14-8 = retired</td>
</tr>
<tr>
<td></td>
<td>7, 1 = removable media device</td>
</tr>
<tr>
<td></td>
<td>6, 1 = non-removable controller and/or device</td>
</tr>
<tr>
<td></td>
<td>5-3 = retired</td>
</tr>
<tr>
<td></td>
<td>2 = response incomplete</td>
</tr>
<tr>
<td></td>
<td>1 = retired</td>
</tr>
<tr>
<td></td>
<td>0 = reserved</td>
</tr>
<tr>
<td>1</td>
<td>Number of logical cylinders</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>Number of logical heads</td>
</tr>
<tr>
<td>4-5</td>
<td>Retired</td>
</tr>
<tr>
<td>6</td>
<td>Number of logical sectors per logical track</td>
</tr>
<tr>
<td>7-8</td>
<td>Reserved</td>
</tr>
<tr>
<td>9</td>
<td>Retired</td>
</tr>
<tr>
<td>10 - 19</td>
<td>Drive serial number (20 ASCII characters)</td>
</tr>
<tr>
<td>20 - 21</td>
<td>Retired</td>
</tr>
<tr>
<td>22</td>
<td>Obsolete</td>
</tr>
<tr>
<td>23 - 26</td>
<td>Firmware revision (8 ASCII characters)</td>
</tr>
<tr>
<td>27 - 46</td>
<td>Model number (40 ASCII characters)</td>
</tr>
<tr>
<td>47</td>
<td>Maximum number of sectors that can be transferred per interrupt on read and write multiple commands</td>
</tr>
<tr>
<td>48</td>
<td>Reserved</td>
</tr>
<tr>
<td>49</td>
<td>Capabilities</td>
</tr>
<tr>
<td></td>
<td>15 - 14 = reserved</td>
</tr>
<tr>
<td></td>
<td>13 = standby timer (1 = values as specified in this standard are supported, 0 = values are Maxtor specific)</td>
</tr>
<tr>
<td></td>
<td>12 = reserved (advanced PIO mode support)</td>
</tr>
<tr>
<td></td>
<td>11, 1 = IORDY supported, 0 = IORDY may be supported</td>
</tr>
<tr>
<td></td>
<td>10, 1 = IORDY can be disabled</td>
</tr>
<tr>
<td></td>
<td>9-8 = shall be set to one. Used by Identify Packet Device command</td>
</tr>
<tr>
<td></td>
<td>7-0 = not used</td>
</tr>
<tr>
<td>WORD</td>
<td>CONTENT DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>50</td>
<td>Reserved</td>
</tr>
<tr>
<td>51 - 52</td>
<td>Obsolete</td>
</tr>
<tr>
<td>53</td>
<td>15-3 = reserved</td>
</tr>
<tr>
<td></td>
<td>2, 1 = the fields supported in words 88 are valid, 0 = the fields supported in words 88 are not valid</td>
</tr>
<tr>
<td></td>
<td>1, 1 = the fields reports in words 64-70 are valid, 0 = the fields reports in words 64-70 are not valid</td>
</tr>
<tr>
<td></td>
<td>0, 1 = the fields reports in words 54-58 are valid, 0 = the fields reports in words 54-58 are not valid</td>
</tr>
<tr>
<td>54</td>
<td>Number of current logical cylinders</td>
</tr>
<tr>
<td>55</td>
<td>Number of current logical heads</td>
</tr>
<tr>
<td>56</td>
<td>Number of logical sectors per track</td>
</tr>
<tr>
<td>57-58</td>
<td>Current capacity in sectors</td>
</tr>
<tr>
<td>59</td>
<td>15-9 = reserved</td>
</tr>
<tr>
<td></td>
<td>8, 1 = multiple sector setting is valid</td>
</tr>
<tr>
<td></td>
<td>7/0 xxh = current setting for number of sectors that can be transferred per interrupt on Read/Write Multiple command</td>
</tr>
<tr>
<td>60-61</td>
<td>Total number of user addressable sectors (LBA mode only)</td>
</tr>
<tr>
<td>62</td>
<td>Obsolete</td>
</tr>
<tr>
<td>63</td>
<td>15-11 = reserved</td>
</tr>
<tr>
<td></td>
<td>10, 1 = Multi-word DMA mode 2 is selected, 0 = Multi-word DMA mode 2 is not selected</td>
</tr>
<tr>
<td></td>
<td>9, 1 = Multi-word DMA mode 1 is selected, 0 = Multi-word DMA mode 1 is not selected</td>
</tr>
<tr>
<td></td>
<td>8, 1 = Multi-word DMA mode 0 is selected, 0 = Multi-word DMA mode 0 is not selected</td>
</tr>
<tr>
<td></td>
<td>7-3, = reserved</td>
</tr>
<tr>
<td></td>
<td>2, 1 = Multi-word DMA mode 2 and below are supported</td>
</tr>
<tr>
<td></td>
<td>1, 1 = Multi-word DMA mode 1 and below are supported</td>
</tr>
<tr>
<td></td>
<td>0, 1 = Multi-word DMA mode 0 is supported</td>
</tr>
<tr>
<td></td>
<td>7-0 = Multi-word DMA transfer modes supported</td>
</tr>
<tr>
<td>64</td>
<td>15-8 = reserved, 7-0 = advanced PIO transfer modes supported</td>
</tr>
<tr>
<td>65</td>
<td>Minimum multi-word DMA transfer cycle time per word (15-0 = cycle time in nanoseconds)</td>
</tr>
<tr>
<td>66</td>
<td>Manufacturer’s recommended multi-word DMA transfer cycle time (15-0 = cycle time in nanoseconds)</td>
</tr>
<tr>
<td>67</td>
<td>Minimum PIO transfer cycle time without flow control (15-0 = cycle time in nanoseconds)</td>
</tr>
<tr>
<td>68</td>
<td>Minimum PIO transfer cycle time with IORDY flow control (15-0 = cycle time in nanoseconds)</td>
</tr>
<tr>
<td>69-74</td>
<td>Reserved</td>
</tr>
<tr>
<td>75</td>
<td>Queue depth, 15-3 = reserved, 4-0, maximum queue depth - 1</td>
</tr>
<tr>
<td>76-79</td>
<td>Reserved</td>
</tr>
<tr>
<td>80</td>
<td>Major version number</td>
</tr>
<tr>
<td></td>
<td>15, reserved, 14-6 = reserved for ATA/ATAPI-14 to ATA/ATAPI-6 respectively</td>
</tr>
<tr>
<td></td>
<td>5, 1 = supports ATA/ATAPI-5</td>
</tr>
<tr>
<td></td>
<td>4, 1 = supports ATA/ATAPI-4</td>
</tr>
<tr>
<td></td>
<td>3, 1 = supports ATA-3</td>
</tr>
<tr>
<td></td>
<td>2, 1 = supports ATA-2</td>
</tr>
<tr>
<td></td>
<td>1, obsolete</td>
</tr>
<tr>
<td></td>
<td>0, reserved</td>
</tr>
<tr>
<td>81</td>
<td>Minor version number</td>
</tr>
<tr>
<td>82</td>
<td>Command set supported. If words 82 and 83 = 0000h or FFFFh command set notification not supported.</td>
</tr>
<tr>
<td></td>
<td>15, obsolete</td>
</tr>
<tr>
<td></td>
<td>14, 1 = supports the NOP command</td>
</tr>
<tr>
<td></td>
<td>13, 1 = supports the Read Buffer command</td>
</tr>
<tr>
<td></td>
<td>12, 1 = supports the Write Buffer command</td>
</tr>
<tr>
<td></td>
<td>11, obsolete</td>
</tr>
<tr>
<td></td>
<td>10, 1 = supports Host-Protected Area feature set</td>
</tr>
<tr>
<td></td>
<td>9, 1 = supports the Device Reset command</td>
</tr>
<tr>
<td></td>
<td>8, 1 = supports Service Interrupt</td>
</tr>
<tr>
<td></td>
<td>7, 1 = supports Release Interrupt</td>
</tr>
<tr>
<td></td>
<td>6, 1 = supports Look Ahead</td>
</tr>
<tr>
<td></td>
<td>5, 1 = supports Write Cache</td>
</tr>
<tr>
<td></td>
<td>4, shall be cleared to zero</td>
</tr>
<tr>
<td></td>
<td>3, 1 = supports the Power Management feature command</td>
</tr>
<tr>
<td></td>
<td>2, 1 = supports the RemovableMedia feature command</td>
</tr>
<tr>
<td></td>
<td>1, 1 = supports the Security Mode feature command</td>
</tr>
<tr>
<td></td>
<td>0, 1 = supports the SMART feature set</td>
</tr>
<tr>
<td>WORD</td>
<td>CONTENT DESCRIPTION</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>83</td>
<td>Command sets supported. If words 82 and 83 = 0000h or FFFFh command set notification not supported.</td>
</tr>
<tr>
<td></td>
<td>15-10, as currently defined</td>
</tr>
<tr>
<td></td>
<td>9, 1 = Automatic Acoustic Management feature set supported</td>
</tr>
<tr>
<td></td>
<td>8-0, as currently defined</td>
</tr>
<tr>
<td>84</td>
<td>Command set extensions supported. If words 84, 85 and 86 = 0000h or FFFFh command set notification not supported.</td>
</tr>
<tr>
<td></td>
<td>15 = shall be cleared to zero</td>
</tr>
<tr>
<td></td>
<td>14 = shall be set to one</td>
</tr>
<tr>
<td></td>
<td>13-0 = reserved</td>
</tr>
<tr>
<td>85</td>
<td>Command set enabled. If words 84, 85 and 86 = 0000h or FFFFh command set notification not supported.</td>
</tr>
<tr>
<td></td>
<td>15, obsolete</td>
</tr>
<tr>
<td></td>
<td>14, 1 = NOP command enabled</td>
</tr>
<tr>
<td></td>
<td>13, 1 = Read Buffer command enabled</td>
</tr>
<tr>
<td></td>
<td>12, 1 = Write Buffer command enabled</td>
</tr>
<tr>
<td></td>
<td>11, obsolete</td>
</tr>
<tr>
<td></td>
<td>10, 1 = Host Protected Area feature set enabled</td>
</tr>
<tr>
<td></td>
<td>9, 1 = Device Reset command enabled</td>
</tr>
<tr>
<td></td>
<td>8, 1 = Service Interrupt enabled</td>
</tr>
<tr>
<td></td>
<td>7, 1 = Release Interrupt enabled</td>
</tr>
<tr>
<td></td>
<td>6, 1 = Look Ahead enabled</td>
</tr>
<tr>
<td></td>
<td>5, 1 = Write Cache enabled</td>
</tr>
<tr>
<td></td>
<td>4, 1 = Packet command feature set enabled</td>
</tr>
<tr>
<td></td>
<td>3, 1 = Power Management feature set enabled</td>
</tr>
<tr>
<td></td>
<td>2, 1 = Removable Media feature set enabled</td>
</tr>
<tr>
<td></td>
<td>1, 1 = Security Mode feature set enabled</td>
</tr>
<tr>
<td></td>
<td>0, 1 = SMART feature set enabled</td>
</tr>
<tr>
<td>86</td>
<td>Command sets supported. If words 82 and 83 = 0000h or FFFFh command set notification not supported.</td>
</tr>
<tr>
<td></td>
<td>15-10, as currently defined</td>
</tr>
<tr>
<td></td>
<td>9, 1 = Automatic Acoustic Management feature set supported</td>
</tr>
<tr>
<td></td>
<td>8-0, as currently defined</td>
</tr>
<tr>
<td>88</td>
<td>Ultra DMA</td>
</tr>
<tr>
<td></td>
<td>15-14 reserved</td>
</tr>
<tr>
<td></td>
<td>13, 1 = Ultra DMA mode 5 is selected</td>
</tr>
<tr>
<td></td>
<td>0 = Ultra DMA mode 5 is not selected</td>
</tr>
<tr>
<td></td>
<td>12, 1 = Ultra DMA mode 4 is selected</td>
</tr>
<tr>
<td></td>
<td>0 = Ultra DMA mode 4 is not selected</td>
</tr>
<tr>
<td></td>
<td>11, 1 = Ultra DMA mode 3 is selected</td>
</tr>
<tr>
<td></td>
<td>0 = Ultra DMA mode 3 is not selected</td>
</tr>
<tr>
<td></td>
<td>10, 1 = Ultra DMA mode 2 is selected</td>
</tr>
<tr>
<td></td>
<td>0 = Ultra DMA mode 2 is not selected</td>
</tr>
<tr>
<td></td>
<td>9, 1 = Ultra DMA mode 1 is selected</td>
</tr>
<tr>
<td></td>
<td>0 = Ultra DMA mode 1 is not selected</td>
</tr>
<tr>
<td></td>
<td>8, 1 = Ultra DMA mode 0 is selected</td>
</tr>
<tr>
<td></td>
<td>0 = Ultra DMA mode 0 is not selected</td>
</tr>
<tr>
<td></td>
<td>7-6 reserved</td>
</tr>
<tr>
<td></td>
<td>5, 1 = Ultra DMA mode 5 and below are supported</td>
</tr>
<tr>
<td></td>
<td>4, 1 = Ultra DMA mode 4 and below are supported</td>
</tr>
<tr>
<td></td>
<td>3, 1 = Ultra DMA mode 3 and below are supported</td>
</tr>
<tr>
<td></td>
<td>2, 1 = Ultra DMA mode 2 and below are supported</td>
</tr>
<tr>
<td></td>
<td>1, 1 = Ultra DMA mode 1 and below are supported</td>
</tr>
<tr>
<td></td>
<td>0, 1 = Ultra DMA mode 0 is supported</td>
</tr>
<tr>
<td>127</td>
<td>reserved</td>
</tr>
<tr>
<td>128</td>
<td>Security Status</td>
</tr>
<tr>
<td></td>
<td>15-9 reserved</td>
</tr>
<tr>
<td></td>
<td>8, Security Level 0 = High, 1 = Maximum</td>
</tr>
<tr>
<td></td>
<td>7-5 reserved</td>
</tr>
<tr>
<td></td>
<td>4, 1 = Security count expired</td>
</tr>
<tr>
<td></td>
<td>3, 1 = Security frozen</td>
</tr>
<tr>
<td></td>
<td>2, 1 = Security locked</td>
</tr>
<tr>
<td></td>
<td>1, 1 = Security enabled</td>
</tr>
<tr>
<td></td>
<td>0, 1 = Security supported</td>
</tr>
<tr>
<td>129-130</td>
<td>reserved</td>
</tr>
<tr>
<td>131</td>
<td>Spin at power-up, but 0 is asserted when no spin at power-up is enabled.</td>
</tr>
<tr>
<td>132-135</td>
<td>Maxtor-specific (not used)</td>
</tr>
<tr>
<td>160-255</td>
<td>reserved</td>
</tr>
</tbody>
</table>
Initialize Drive Parameters

Enables the drive to operate as any logical drive type. The drive will always be in the translate mode because of Zone Density Recording, which varies the number of sectors per track depending on the zone. Through setting the Sector Count Register and Drive Head Register, this command lets the host alter the drive's logical configuration. As a result, the drive can operate as any equal to or less than capacity drive type. Do not exceed the total number of sectors available on the drive:

When this command is executed, the drive reads the Sector Counter Register and the Drive Head Register (and so determines the number of the logical sectors per track and maximum logical head number per cylinder and will calculate the number of logical cylinders.)

Upon receipt of the command, the drive:

1. Sets BSY,
2. Saves the parameters,
3. Resets BSY and
4. Generates an interrupt.

To specify maximum heads, write 1 less than the maximum (e.g. write 4 for a 5 head drive). To specify maximum sectors, specify the actual number of sectors (e.g. 17 for a maximum of 17 sectors/track).

The sector count and head values are not checked for validity by this command. If they are invalid, no error will be posted until an illegal access is made by some other command.

Moves the read/write heads from anywhere on the disk to cylinder 0. When this command is received, the drive:

1. Sets BSY and
2. Issues a seek to cylinder zero.

The drive waits for the seek to complete, then the drive:

1. Updates status,
2. Resets BSY and

If the drive cannot reach cylinder 0, the Error bit is set in the Status register, and the Track 0 bit is set in the Error register.

NOTE: If a maximum head and sector number is selected — such that the number of cylinders will exceed 65,535 — then the maximum cylinder value will be reduced to 65,535.
Seek, Format and Diagnostic Commands

Seek

Initiates a seek to the track, and selects the head specified in the Command block.

1. Sets BSY in the Status register,
2. Initiates the Seek,
3. Resets BSY and
4. Generates an interrupt.

The drive does not wait for the seek to complete before returning the interrupt. If a new command is issued to a drive during the execution of a Seek command, the drive will wait (with BSY active) for the Seek to complete before executing the new command.

Format Track

Formats the track specified in the Command Block. Shortly after the Command register is written, the drive sets the bit, and waits for the host to fill the sector buffer with the interleave table. When the buffer is full, the drive resets DRQ, sets BSY and begins command execution. If the drive is not already on the desired track, an implied seek is performed. Once at the desired track the data fields are written with all zeroes.

Execute Drive Diagnostic

Commands the drive to implement the internal diagnostic tests. (These tests are executed only upon command receipt; they do not run automatically at power up or after a reset.)

The drive sets BSY immediately upon receiving this command. The following table presents the codes and their descriptions. Note that the value in the Error register should be viewed as a unique 8 bit Code.

<table>
<thead>
<tr>
<th>ERROR CODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>No error detected</td>
</tr>
<tr>
<td>00</td>
<td>Master drive failed</td>
</tr>
<tr>
<td>80, 82</td>
<td>Master and slave drives failed</td>
</tr>
<tr>
<td>81</td>
<td>Slave drive failed</td>
</tr>
</tbody>
</table>

Note: If a slave drive fails diagnostics, the master drive OR’s 80h with its own status, and loads that code into the Error register. If a slave drive passes diagnostics (or a slave is absent), the master drive OR’s 00 with its own status and loads that code into the Error register.
S.M.A.R.T. Command Set

Execute S.M.A.R.T.

The Self-Monitoring Analysis and Reporting Technology (S.M.A.R.T.) command has been implemented to improve the data integrity and data availability of hard disk drives. In some cases, a S.M.A.R.T. capable device will predict an impending failure with sufficient time to allow users to backup their data and replace the drive before data loss or loss of service. In addition to S.M.A.R.T., DiamondMax drives support DST and all of its options.

The S.M.A.R.T. sub-commands (listed below) comprise the ATA S.M.A.R.T. feature set that provide access to S.M.A.R.T. attribute values, attribute thresholds and other logging and reporting information. Prior to writing a S.M.A.R.T. command to the device’s command register, key values must be written by the host into the device’s Cylinder Low and Cylinder High registers, or the command will be aborted. For any S.M.A.R.T. sub-command, if a device register is not specified as being written with a value by the host, then the value in that register is undefined and will be ignored by the device.

The key values are:

<table>
<thead>
<tr>
<th>Key</th>
<th>Register</th>
</tr>
</thead>
<tbody>
<tr>
<td>4Fh</td>
<td>Cylinder Low (1F4h)</td>
</tr>
<tr>
<td>C2h</td>
<td>Cylinder High (1F5h)</td>
</tr>
</tbody>
</table>

The S.M.A.R.T. sub-commands use a single command code (B0h) and are differentiated from one another by the value placed in the Features register. In order to issue a command, the host must write the sub-command-specific code to the device’s Features register before writing the command code to the command register. The sub-commands and their respective codes are:

- **D0h** S.M.A.R.T. Read Attribute Value
 - This feature returns 512 bytes of attribute information to the host.

- **D1h** S.M.A.R.T. Read Attribute Thresholds
 - This feature returns 512 bytes of warranty failure thresholds to the host.

- **D2h** Enable/Disable Autosave
 - To enable this feature, set the sector count register to F1h (enable) or 0 (disable). Attribute values are automatically saved to non-volatile storage on the device after five minutes of idle time and before entering idle, sleep or standby modes. This feature is defaulted to “enabled” when S.M.A.R.T. is enabled via the S.M.A.R.T. Enable Operations commands. The autosave feature will not impact host system performance and does not need to be disabled.

- **D3h** S.M.A.R.T. Save Attribute Value
 - This feature saves the current attribute values to non-volatile storage.

- **D4h** Perform Off-Line Data Collection/DST
 - Data is collected from random seeks, timed pattern seek times and head margin tests. Supports captive long and short; and non-captive long and short.

- **D5h** S.M.A.R.T. Read Log Sector
 - Allows the host to read S.M.A.R.T. error log and host vendor-specific sectors.

- **D6h** S.M.A.R.T. Write Log Sector
 - Allows the host to write S.M.A.R.T. error log and host vendor-specific sectors.

- **D8h** Enable S.M.A.R.T.
- **D9h** Disable S.M.A.R.T.
- **DAh** S.M.A.R.T. Return Status
 - This feature allows the host to assess the status of a S.M.A.R.T. capable device by comparing all saved attribute values with their corresponding warranty failure thresholds. If no thresholds are exceeded, the drive is declared to have a positive health status. If any warranty failure threshold is exceeded, the drive is declared to have a negative health status. Executing this sub-command results in all attribute values being saved to non-volatile storage on the device.

- **DBh** Enable/Disable Automatic Off-Line
 - To enable this feature, set the Sector Count register to F1h or 0 to disable.
Service and Support

Service Policy

If a customer discovers a defect in a Maxtor hard drive, Maxtor will, at its option, repair or replace the disk drive at no charge to the customer, provided it is returned during the warranty period. Drives must be properly packaged in Maxtor packaging or Maxtor-approved packaging to obtain warranty service. Any unauthorized repairs or adjustments to the drive void the warranty.

To consistently provide our customers with the best possible products and services, Maxtor developed the Total Customer Satisfaction (TCS) program. Through the ongoing TCS process, Maxtor employees take direct responsibility for every customer’s level of satisfaction – with Maxtor technology, price, quality, delivery, service and support.

No Quibble Service®

Another TCS feature is Maxtor’s No Quibble Service® policy. By minimizing paperwork and processing, No Quibble Service dramatically cuts the turnaround time normally required for repairs and returns. Here’s how it works:

1. Customer visits www.maxtor.com or calls 1-800-2MAXTOR for a Return Material Authorization (RMA) number and provides a credit card number,
2. Maxtor ships a replacement drive within 2 business days, and
3. Customer returns the original drive and credit card draft is destroyed.

Product Support

Technical Assistance/Customer Service

Hours of operation: 6 a.m. to 6 p.m. (Mountain Time) Monday through Friday.

<table>
<thead>
<tr>
<th>Region</th>
<th>Languages supported:</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>North, Central and South America</td>
<td>English, Spanish</td>
<td>800-2MAXTOR (800-262-9867)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail www.maxtor.com</td>
</tr>
<tr>
<td>Outside Continental USA</td>
<td></td>
<td>303-678-2015</td>
</tr>
<tr>
<td>Europe, Middle East, Africa</td>
<td>English, French, German</td>
<td>+353 1 204 1111</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-mail www.maxtor.com</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+353 1 286 1419</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MaxFax + 353 1 204 1122</td>
</tr>
</tbody>
</table>
Asia/Pacific (APAC)

Australia
Vox
+ 61 2 9369 3662
Fax
+ 61 2 9369 2082
MaxFax
+ 61 2 9369 4733
BBS
+ 61 2 9369 4293

Singapore
Languages supported: English
Contact local Maxtor sales office

From Dial
Australia 1-800-124-328
Hong Kong 800-96-3387
Indonesia 803-65-6500
Japan 0031-65-3616
South Korea 0078-65-800-6500
Malaysia 1-800-80-1126
New Zealand 0800-44-6542
Singapore Toll Free 1-800-481-6788
Singapore Vox 65-8520220
Singapore Fax 65-251744
Taiwan 0080-65-1062
Thailand 001-800-65-6500

MaxInfo Service
Use a touch-tone phone to listen to technical information about Maxtor products and the top Q&A's from our 24-hour automated voice system.

Continental USA 800-2MAXTOR (800-262-9867)
Outside Continental USA 303-678-2015, listen for option

MaxFax® Service
Use a touch-tone phone to order technical reference sheets, drive specifications, installation guides and other documents from our 24-hour automated fax retrieval system. Requested items are sent directly to your fax machine.

Continental USA Languages supported: English
Phone 800-2MAXTOR (800-262-9867), listen for option
Outside Continental USA 303-678-2618
Europe Language support: English, French, German
Phone + 353 1 204 1122
Asia/Pacific (APAC) Language support: English
Phone + 61 2 9369 4733
access
To obtain data from, or place data into, RAM, a register, or data storage device.

access time
The interval between the issuing of an access command and the instant that the target data may be read or written. Access time includes seek time, latency and controller overhead time.

address
A number, generally binary, distinguishing a specific member of an ordered set of locations. In disk engineering, the address may consist of drives (unit address), radial positions (cylinder address), or circumferential position (sector address).

allocation
A process of assigning designated areas of the disk to particular files.

alternate track
A spare track used in the event that a normal track becomes damaged or is unusable.

analog
A signal or system that does not use digital states to convey information. A signal may have any number of significant states (values), contrasted to digital signals which can only have two states.

ANSI
American National Standards Institute.

application program
A sequence of programmed instructions that tell the computer how to perform some end-user task, such as accounting or word processing.

areal density
Bit density (bits per inch) multiplied by track density (tracks per inch) or bits per square inch.

asymmetry
A distortion of the readback signal which is shown in different intervals between the positive and negative voltage peaks.

auxiliary memory
Memory other than main memory; generally a mass-storage subsystem containing disk drives and backup tape drives, controller(s) and buffer memory (also called peripheral memory).

average access time
The average time to make all possible length accesses (seeks).

average seek time
The average time to make all possible length seeks. A typical measure of performance.

bad block
A block that cannot store data because of a media flaw.

bit
An abbreviation for binary digit, of which there are two (0 and 1). A bit is the basic data unit of most digital computers. A bit is usually part of a data byte or word, but bits may be used singly to control or read logic “on-off” functions. The fundamental unit information, often used loosely to refer to a circuit or magnetization state at a particular instant in time.

BIOS
Acronym for Basic Input/Output System. The firmware area of a CPU that controls operations through the system bus and to the attached cards and peripheral devices.

BPI
Acronym for bits per inch. See bit density.

block
A group of bytes handled, stored, and accessed as a logical data unit, such as an individual file record.

buffer
A temporary data storage area that compensates for a difference in data transfer rates and/or data processing rates between sender and receiver.

bus
A collection of functionally parallel conductors that forms an interconnection between functional blocks in a digital device. A length of parallel conductors that forms a major interconnection route between the computer system CPU (central processing unit) and its peripheral subsystems. Depending on its design, a bus may carry data, addresses, power, and more.

byte
An ordered collection of bits treated as a unit. Most often, a byte is understood to consist of eight bits. One byte is necessary to define an alphanumeric character.

cache
Random access memory (RAM) used as a buffer between the CPU and the disk drive.

capacity
The amount of data, usually expressed in bytes, which can be stored in a given device or portion of same.
central processing unit (CPU)
The heart of the computer system that executes programmed instructions. It includes the arithmetic logic unit (ALU) for performing all math and logic operations, a control section for interpreting and executing instructions, internal memory for temporary storage of program variables and other functions.

channel
A collection of electronic circuits used in the process of writing and reading information to and from magnetic media.

character
An ordered collection of bits representing one of a set of predefined symbols. Often the term is used interchangeably with byte, but this is inexact.

closed loop
A control technique that enables the positioning system to correct off-track errors in real time. The actual head position is monitored and compared to the ideal track position to determine any position error that might be occurring. This information is then used to produce a correction signal (feedback) that goes to the positioner to correct the error. (See also track following servo).

closed loop servo
A servo control technique that uses position feedback to correct off-track errors. See Track Following Servo.

cluster
The smallest allocatable unit of disk storage allowed by MS-DOS; each FAT entry represents one cluster.

controller
An electronic device for connecting one or more mass storage peripherals (rigid disk drives, tape drives, and optical disk drives) to the input/output circuits of a host computer. Controllers vary in complexity, with more sophisticated units able to buffer and schedule commands, correct data errors, and bypass media defects without host intervention.

controller
A miniature CPU dedicated to controlling a peripheral device, such as a disk drive, tape drive, video display terminal, or printer. The controller executes commands from the central processing unit and reissues commands to the peripheral device.

correctable error
An error that can be overcome by the use of Error Detection and Correction.

cylinder
On several disk surfaces sharing a common rotational axis, the aggregate of tracks at a given radial position. A set of disk tracks that are simultaneously under the set of read/write heads. This three-dimensional storage volume can be accessed after a single seek.

cylinder zero
The outermost cylinder in a drive that can be used for data storage.
digital magnetic recording
See magnetic recording.

direct access
Access directly to memory location. (See random access).

direct memory access (DMA)
A mean of data transfer between the device and host memory without processor intervention.
directory
A listing of files maintained by the disk operation system (DOS) or a data base management system to enable a user to quickly access data files.
disk
A flat, circular piece of metal (usually aluminum) or plastic (usually mylar) with a magnetic coating upon which information can be recorded. (See, for example, floppy disk or Winchester disk)
disk drive or disk memory device
The total electromechanical storage device containing disks and read/write heads, head positioning mechanism, drive motor, and electronics.
disk pack
A number of metal disks packaged in a canister for removal from the disk drive (predecessor of Winchester technology).
disk operating system (DOS)
The master computer system program that schedules tasks, allocates the computer system resources, controls accesses to mass storage devices, manages files, and so forth. Typical disk operating systems include CP/M, MS-DOS, and UNIX.
disk storage
Auxiliary memory system containing disk drives.
disk transfer rate
The rate that digital data is transferred from one point to another. Expressed in either bits/second or bytes/second.
double frequency encoding
Another name for FM encoding. This is because all possible data combinations will result in only two possible temporal displacements of adjacent data bits, specifically “1F” and “2F.”

early window
A data window that has been intentionally shifted in time in an early direction.
embedded servo
A servo technique used for track following. Position information is prerecorded between data areas in a track so that a data head, and proper additional circuitry, can determine the data head location with respect to the center position of the track (or cylinder) in question.
erase
A process by which a signal recorded on a medium is removed and the medium made ready for rerecording.
error correction code (ECC)
A mathematical algorithm that can detect and correct errors in a data field. This is accomplished with the aid of Check Bits added to the raw data.
errorfree
A recording surface that has no defects.
error rate
The number of errors (type must be specified) that occur in a specified number of bits read.
error recovery procedure
The process that occurs in response to a data error. In a drive without ECC, this would include re-calibration and re-seeking to the specified track and rereading the specified data.
extra pulse
Term used in surface certification. It is when a flux field discontinuity remains after the recording surface is erased, thereby producing an electrical output of a read head passing over the area with the discontinuity. An extra pulse occurs when the electrical output is larger than a specified threshold.

feedback
In a closed-loop system, the output signal (from the servo head) is used to modify the input signal to the positioner.
fetch
A read operation and its related data transfer operations.
file allocation table (FAT)
Allocates space on the disk for files, one cluster at a time; locks out unusable clusters; identifies unused (free) area; and lists a file’s location. With two FAT’s present, the second copy ensures consistency and protects against loss of data if one of the sectors on the first FAT is damaged.
flux changes per inch
Synonymous with frpi (flux reversals per inch). Only in MFM recording does 1 fci equal 1 bpi (bit per inch). In run-length-limited encoding schemes, generally 1 fci equals 1.5 bpi.
format
In a disk drive, the arrangement of data on a storage media. A standard 5.25-inch disk format consists of 17, 26, or 36 sectors per track, and 512 bytes of data per sector, plus identification, error correction, and other bytes necessary for accessing and synchronizing data.
formatted capacity
The actual capacity available to store data in a mass storage device. The formatted capacity is the gross capacity, less the capacity taken up by the overhead data used in formatting the sectors.

frequency modulation
A recording code. A flux reversal at the beginning of a cell time represents clock bit; a “1” bit is a flux reversal at the center of the cell time, and a “0” bit is an absence of a flux reversal.
frequency response
A measure of how effectively a circuit or device transmits the different frequencies applied to it. In disk and tape drives this refers to the read/write channel. In disk drives, it can also refer to the dynamic mechanical characteristics of a positioning system.

gigabyte (GB)
One billion bytes (one thousand megabytes) or 10^9.

hard error
An error that is not able to be overcome by repeated readings and repositioning means.

hard sectored
A technique where a digital signal indicates the beginning of a sector on a track. This is contrasted to soft sectoring, where the controller determines the beginning of a sector by the reading of format information from the disk.

head
The electromagnetic device that write (records), reads (plays back), and erases data on a magnetic media. It contains a read core(s) and/or a write core(s) and/or erase core(s) which is/are used to produce or receive magnetic flux. Sometimes the term is all inclusive to mean the carriage assembly which includes the slider and flexure.

head crash
The inadvertent touching of a disk by a head flying over the disk (may destroy a portion of the media and/or the head).

head disk assembly (HDA)
The mechanical portion of a rigid, fixed disk drive. It usually includes disks, heads, spindle motor, and actuator.

head loading zone
The non-data area on the disk set aside for the controlled takeoff and landing of the Winchester heads when the drive is turned on and off. Dedicated annulus on each disk surface in which heads are loaded, unloaded, or flying height is established. Head-disk contact may occur in some instances; no data is recorded in this area.

head positioner
Also known as actuator, a mechanism that moves the arms that carry read/write heads to the cylinder being accessed.

index
Similar to a directory, but used to establish a physical to logical cross reference. Used to update the physical disk address (tracks and sectors) of files and to expedite accesses.

inside diameter
The smallest radial position used for the recording and playback of flux reversals on a magnetic disk surface.

initialization
Applying input patterns or instructions to a device so that all operational parameters are at a known value.

input
Data entering the computer to be processed; also user commands.

input/output (I/O)
The process of entering data into or removing data from a computer system or a peripheral device.

intelligent peripheral
A peripheral device that contains a processor or microprocessor to enable it to interpret and execute commands.

interface
The data transmitters, data receivers, logic, and wiring that link one piece of computer equipment to another, such as a disk drive to a controller or a controller to a system bus.

interface standard
The interface specifications agreed to by various manufacturers to promote industry-wide interchangeability of products such as a disk drive. Interface standards generally reduce product costs, allows buyers to purchase from more than one source, and allow faster market acceptance of new products.

interleave
An ordering of physical sectors to be skipped between logical sectors on your hard disk.

I/O processor
Intelligent processor or controller that handles the input/output operations of a computer.

interrupt
A signal, usually from a subsystem to a central processing unit, to signify that an operation has been completed or cannot be completed.

jumper
A small piece of plastic that slides over pairs of pins that protrude from the circuit board on the hard drive to make an electrical connection and activate a specific option.

kilobyte (KB)
A unit of measure of approximately 1,000 bytes. (However, because computer memory is partitioned into sizes that are a power of two, a kilobyte is really 1,024 bytes.)

landing zone or Lzone
The cylinder number/location to where the read/write head(s) move upon power down.

late bit
A bit that is in the late half of the data window.
late window
A data window that has been shifted in a late direction to facilitate data recovery.

latency
A delay encountered in a computer when waiting for a specific response. In a disk drive there is both seek latency and rotational latency. The time required for the addressed sector to arrive under the head after the head is positioned over the correct track. It is a result of the disk’s rotational speed and must be considered in determining the disk drive’s total access time.

logic
Electronic circuitry that switches on and off (“1” and “0”) to perform functions.

logical address
A storage location address that may not relate directly to a physical location. Usually used to request information from a controller, which performs a logical to physical address conversion, and in turn, retrieves the data from a physical location in the mass storage peripheral.

logical block addressing
Defines the addressing of the device by the linear mapping of sectors.

logical sector
The lowest unit of space that DOS can access through a device driver; one or more physical sectors.

low frequency
The lowest recording frequency used in a particular magnetic recording device. With FM or MFM channel codes, this frequency is also called “IF.”

main memory
Random-access memory (RAM) used by the central processing unit (CPU) for storing program instructions and data currently being processed by those instructions. (See also random access memory.)

mass storage
Auxiliary memory used in conjunctions with main memory; generally having a large, on-line storage capacity.

megabyte (MB)
A unit of measure approximately one million bytes (actually 1,048,576 bytes) or 10E6.

memory
Any device or storage system capable of storing and retrieving information. (See also storage definitions.)

microcomputer
A computer whose central processing unit is a microprocessor. It is usually, but not necessarily, desktop size.

microprocessor
A central processing unit (CPU) manufactured as a chip or a small number of chips.

missing pulse
A term used in surface certification. It is when a prerecorded signal is reduced in amplitude by a certain specified percentage.

modified frequency modulation (MFM)
A method of encoding digital data signals for recording on magnetic media. Also called “three frequency recording.” Recording code that only uses synchronizing clock pulse if data bits are not present. Doubles the lineal bit density without increasing the lineal flux reversal density, compared to Frequency Modulation.

modified modified frequency modulation (MMFM)
A recording code similar to MFM that has a longer run length limited distance.

modulation
1. Readback voltage fluctuation usually related to the rotational period of a disk. 2. A recording code, such as FM, MFM, or RLL, to translate between flux reversals and bits or bytes.

non-return to zero
A form of data encoding that is not self-clocking, in other words, it needs to be provided with an external bit cell clock signal. Generally used in higher-performance disk drives.

off-line
Processing or peripheral operations performed while disconnected from the system CPU via the system bus.

on-line
Processing or peripheral operations performed while disconnected from the system CPU via the system bus.

open loop servo
A head positioning system that does not use positional information to verify and correct the radial location of the head relative to the track. This is usually achieved by use of a stepper motor which has predetermined stopping point that corresponds to track locations.

operating system
A software program that organizes the actions of the parts of the computer and its peripheral devices. (See disk operating system.)

outside diameter
The largest radius recording track on a disk.

overwrite
A test that measures the residual 1F recorded frequency on a track after being overwritten by a 2F signal. Variations of the test exist.
parallelism
1. The condition of two planes or lines being parallel. Important in disk drives because a lack of it in mechanical assemblies can result in positioning inaccuracy. More precisely: planes-coplanar; lines-colinear. 2. Is the local variation in disk thickness measured independently of thickness itself. 3. The ability of a multiprocessor computer to allocate more than one processor (CPU) to a computing problem, where each CPU works on a separate problem or separate segment of that problem. Also referred to as parallel processing.

parity
A simple method of data error detections that always makes numbers either odd or even, using an extra bit in which the total number of binary 1s (or 0s) in a byte is always odd or always even; thus, in an odd parity scheme, every byte has eight bits of data and one parity bit. If using odd parity and the number of 1 bits comprising the byte of data is not odd, the ninth or parity bit is set to 1 to create the odd parity. In this way, a byte of data can be checked for accurate transmission by simply counting the bits for an odd parity indication. If the count is ever even, an error is indicated.

partition
A logical section of a disk drive, each of which becomes a logical device with a drive letter.

peak shift
The shifting in time of the zero-slope portion of a readback voltage from the values contained in the write current waveform. Sometimes incorrectly used to describe bit jitter.

peripheral equipment
Auxiliary memory, displays, printers, and other equipment usually attached to a computer system’s CPU by controllers and cables. (They are often packaged together in a desktop computer.)

phase locked loop (PLL)
A circuit whose output locks onto and tracks the frequency of an input signal. Sometimes incorrectly called a data separator.

phase margin
Measure in degrees of the amount of difference between excursions from the window center where flux reversals can occur and the edge of the data window. Similar to window margin.

physical sector
The smallest grouping of data on the hard disk; always 512 bytes.

PIO
Programmable Input Output. A means of accessing device registers. Also describes one form of data transfers. PIO data transfers are performed by the host processor using PIO register accesses to the data register.

plated thin film media
Magnetic disk memory media having its surface plated with a thin coating of a metallic alloy instead of being coated with oxide.

processing
The process of the computer handling, manipulating and modifying data such as arithmetic calculation, file lookup and updating, and word pressing.

pulse crowding
Modification of playback amplitude due to superpositioning of adjacent flux reversal fields being sensed by the read/write gap.

pulse detect
A digital pulse train in which each leading edge or each edge corresponds to a magnetic transition read from the disk. If transition qualification circuitry exists in the drive, this signal is the output of same. Also known as transition detect.

random access memory (RAM)
Memory designed so that any storage location can be accessed randomly, directly and individually. This is contrasted to sequential access devices such as tape drives.

read
To access a storage location and obtain previously recorded data. To sense the presence of flux reversals on magnetic media. Usually implemented such that a dynamic flux amplitude will cause a proportional electrical output from the transducer.

read gate signal
A digital input signal which causes the drive circuitry to recover data.

read only memory (ROM)
A form of memory which cannot be changed in formal operational modes. Many different types are available. RAM is used for permanent information storage. Computer control programs are often stored in ROM applications.

read/write head
The recording element which writes data to the magnetic media and reads recorded data from the media.

re-calibrate
The action of moving the head of a disk drive to cylinder zero.

recoverable error
A read error, transient or otherwise, falling within the capability of an ECC mechanism to correct, or able to overcome by rereading the data in question.

rotational latency
The amount of delay in obtaining information from a disk drive attributable to the rotation of the disk.

run-length limited
An encoding process that repositions data bits and limits the length of zero bits in order to compress information being stored on disks.

run-length limited encoding
A recording code. Sometimes meant to denote “2.7 RLL” which can signify 1.8 times the bits as MFM, given the same number of flux reversals in a given lineal distance.
sector
A logical segment of information on a particular track. The smallest addressable unit of storage on a disk. Tracks are made of sectors.

sector pulse signal
A digital signal pulse present in hard sectored drives which indicates the beginning of a sector. Embedded servo pattern or other prerecorded information may be present on the disk when sector is active.

seek
A random access operation by the disk drive. The act of moving a set of read/write heads so that one of them is over the desired cylinder. The actuator or positioner moves the heads to the cylinder containing the desired track and sector.

seek complete signal
A digital signal level which indicates that the positioner is not moving and is located over a cylinder or offset position.

seek time
The amount of time between when a step pulse or seek command is issued until the head settles onto the desired cylinder. Sometimes is measured without settling times.

sequential access
The writing or reading of data in a sequential order such as reading data blocks stored one after the other on magnetic tape. This is contrasted to random access of information.

servo burst
A momentary servo pattern used in embedded servo control systems usually positioned between sectors or at the end of a track.

servo control
A technique by which the speed or position of a moving device is forced into conformity with a desired or standard speed or position.

servo head
A magnetic head designed specifically for accurately reading servo data.

servo pattern
A readback signal that indicates the position of a head relative to a track.

servo surface
A recording surface in a multi-surface disk drive that only contains control information which provides timing, head position, and track-following information for the data surfaces.

servo system
An automatic system for maintaining the read/write head on track; can be either “open loop,” “quasi-closed loop,” or “closed loop.”

servo track
A track on a servo surface. The prerecorded reference track on the dedicated servo surface of a disk drive. All data track positions are compared to their corresponding servo track to determine “off track”/“on track” position.

settling time
The time it takes a head to stop vibrating, within specified limits, after it reaches the desired cylinder.

silicon
Semiconductor material generally used to manufacture microprocessors and other integrated circuit chips.

small computer system interface (SCSI)
An intelligent interface that incorporates controller functions directly into the drive.

S.M.A.R.T. capability
Self-Monitoring Analysis and Reporting Technology. Prediction of device degradation and/or faults.

soft error
A data error which can be overcome by rereading the data or repositioning the head.

soft sectored
A technique where the controller determines the beginning of a sector by the reading of format information from the disk. This is contrasted to hard sectoring where a digital signal indicates the beginning of a sector on a track.

software
Applications programs, operating systems, and other programs (as opposed to hardware).

spindle
The rotating hub structure to which the disks are attached.

spindle motor
The motor that rotates the spindle and therefore the disks.

sputtered media
Magnetic disk or tape that has the magnetic layer deposited by sputtering means.

stepper motor
A motor that has known detent positions where the rotor will stop with the proper control in some cases. The digitally controlled motor moves the head positioner from track to track in small, step-like motions.

storage capacity
The amount of data that can be stored in a memory location, usually specified in kilobytes for main memory and floppy drives and megabytes for mass storage devices.

storage density
Usually refers to recording density (BPI, TPI, or a combination of the two.)

storage location
A memory location, identified by an address where information may be read or written.
strobe offset signal
A group of digital input signal levels which cause the read PLL and/or data decoder to shift the decoding windows by fractional amounts. Often early/late are modified when two signals are used.

thin-film head
A magnetic transducer manufactured by deposition of magnetic and electrical materials on a base material contrasted with prior art mechanical methods. Read/write heads whose read/write element is deposited using integrated circuit techniques rather than being manually wound.

thin-film media
See plated thin film media.

track
One surface of a cylinder. A path which contains reproducible information left on a magnetic medium by recording means energized from a single channel.

track-following servo
A closed-loop positioner control system that continuously corrects the position of the disk drive’s heads by utilizing a reference track and a feedback loop in the head positioning system. (See also closed loop.)

tracks per inch (TPI)
A measurement of radial density. Tracks per inch of disk radius.

track positioning
The method, both mechanical and electrical, used to position the heads over the correct cylinder in a disk drive system.

un-correctable error
An error that is not able to be overcome with Error Detection and Correction.

unformatted capacity
Storage capacity of disk drive prior to formatting; also called the gross capacity. (See format.) The raw capacity of a drive not taking into account the capacity loss due to storage of the format control information on the disk surfaces.

unrecoverable error
A read error falling outside the capability of an ECC mechanism to correct, or not able to be overcome by rereading the data in question, with or without repositioning the head.

voice coil motor
A positioning motor that uses the same principle as a voice coil in a loudspeaker. The motor has no detent positions. The mechanical motion output of it can be either rotary or linear.

Whitney head
A successor to the original Winchester read/write head design. The primary change was to make the flexure smaller and more rigid. First used in IBM 3370/3380.

Whitney technology
A method of constructing a read/write head in a rigid disk drive using a Whitney head. In all other details it is the same as Winchester technology.

Winchester head
The read/write head used in Winchester technology, non-removable media disk drives. May be either a monolithic or composite type. It is aerodynamically designed to fly within microinches of the disk surface.

Winchester technology
A method of constructing a rigid disk drive using concepts introduced in the IBM model 3340 disk drive. The primary changes from prior technology was to lower the mass of the slider, use of a monolithic slider, radically changing the design of the flexure and having the slider come to rest on a lubricated disk surface when disk rotation ceases. In addition to the above, a totally sealed chamber containing the read/write heads and disks was used to protect against contamination.

window margin
The amount of tolerance a read/write system has for transition jitter at a specified error rate level.

word
A number of bits, typically a multiple of eight, processed in parallel (in a single operation). Standard word lengths are 8, 16, 32 and 64 bits (1, 2, 4, or 8 bytes).

write
The recording of flux reversals on a magnetic media.

write pre-compensation
The intentional time shifting of write data to offset the effects of bit shift in magnetic recording.

write gate signal
A digital input signal level which causes the drive circuitry to record (write) data.