Revision status summary sheet

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Writer/Engineer</th>
<th>Sheets Affected</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5/2/96</td>
<td>D. Ashby</td>
<td>1-75</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Ashby and Kiene</td>
<td>9, 23 and 25</td>
</tr>
</tbody>
</table>

If the SCSI Interface information is needed the Volume 2 Interface Manual should be ordered, P/N 77738479.
6.4.6 Electromagnetic susceptibility ... 25
6.5 Mechanical specifications .. 26

7.0 Defect and error management .. 29
7.1 Drive internal defects and errors 29
7.2 SCSI systems errors .. 29

8.0 Installation .. 31
8.1 Drive ID/option select header .. 31
 8.1.1 Notes for Figures 7a, 7b, 7c, 7d and 7e. 36
 8.1.2 Function description ... 37
8.2 Drive orientation ... 38
8.3 Cooling ... 38
 8.3.1 Air flow ... 38
8.4 Drive mounting ... 38
8.5 Grounding ... 38

9.0 Interface requirements ..
9.1 General description .. 41
9.2 SCSI interface messages supported 41
9.3 SCSI interface commands supported 42
 9.3.1 Inquiry data .. 44
 9.3.2 Mode Sense data .. 45
9.4 SCSI bus conditions and miscellaneous features supported 48
9.5 Synchronous data transfer ... 49
 9.5.1 Synchronous data transfer periods supported 49
 9.5.2 REQ/ACK offset .. 49
9.6 Physical interface .. 49
 9.6.1 DC cable and connector .. 49
 9.6.2 SCSI Interface physical description 52
 9.6.3 SCSI Interface Cable requirements 52
 9.6.4 Mating connectors ... 53
9.7 Terminator requirements ... 63
9.8 Terminator power ... 63
9.9 Disc drive SCSI timing ... 64

10.0 Technical support service .. 67
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Hawk 2XL family drive</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Hawk 2XL family drive</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Typical Hawk 2XL family drive +5 V and +12 V current profile</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>Locations of components (listed in Table 3)</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>Recommended mounting (Applicable to all Hawk 2XL family models)</td>
<td>24</td>
</tr>
<tr>
<td>6a</td>
<td>Mounting configuration dimensions for model “N”</td>
<td>26</td>
</tr>
<tr>
<td>6b</td>
<td>Mounting configuration dimensions for model “W”</td>
<td>27</td>
</tr>
<tr>
<td>6c</td>
<td>Mounting configuration dimensions for model “WC”</td>
<td>28</td>
</tr>
<tr>
<td>7a</td>
<td>Hawk 2XL family drive ID select header for model “N”</td>
<td>32</td>
</tr>
<tr>
<td>7b</td>
<td>Hawk 2XL family drive ID select for models “W” and “WC”</td>
<td>33</td>
</tr>
<tr>
<td>7c</td>
<td>Hawk 2XL family drive ID select header J1-auxiliary for model “W” (J1-Aux. Pins 1A-12A)</td>
<td>34</td>
</tr>
<tr>
<td>7d</td>
<td>Hawk 2XL family drive option select header for models “N” and “W”</td>
<td>35</td>
</tr>
<tr>
<td>7e</td>
<td>Hawk 2XL family drive option select header for model “WC”</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Air flow (suggested)</td>
<td>39</td>
</tr>
<tr>
<td>9a</td>
<td>Physical interface for “N” model drives</td>
<td>50</td>
</tr>
<tr>
<td>9b</td>
<td>Model “W” drive physical interface (68 pin J1 SCSI I/O connector)</td>
<td>51</td>
</tr>
<tr>
<td>9c</td>
<td>Model “WC” drive physical interface (80 pin J1 SCSI I/O connector / DC power connector)</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>SCSI Daisy-chain interface cabling</td>
<td>54</td>
</tr>
<tr>
<td>11a</td>
<td>Nonshielded 50 pin SCSI device connector</td>
<td>55</td>
</tr>
<tr>
<td>11b</td>
<td>Nonshielded 68 pin SCSI device connector</td>
<td>56</td>
</tr>
<tr>
<td>11c</td>
<td>Nonshielded 80 pin SCSI connector, used on “WC” model</td>
<td>57</td>
</tr>
<tr>
<td>12</td>
<td>Single-ended transmitters and receivers</td>
<td>62</td>
</tr>
</tbody>
</table>
1.0 Scope

This manual describes the Seagate Technology, Inc. Hawk 2XL family of disc drives. This high capacity, high performance member of the Seagate 1-inch high 3.5-inch rigid disk family is a next generation product from the Hawk 2LP (ST34230) disc drive. The Hawk 2XL features a new cost-optimized HDA, reduced cost SCSI code, reduced header fields and the use of innovative technology in the embedded servo, R/W heads, read circuits and SCSI controller. Section 5 lists performance information for this drive. The Hawk 2XL drive operates an interface to the host defined by a subset of ANSI SCSI 2/SCSI 3 as described in Section 9 of this manual (Vol. 1) and the Seagate SCSI Interface manual 77738479 (Vol. 2).

The Hawk 2XL family consists of ST32151, ST31051, ST32155 and ST31055 products. Models offered are N, W, and WC.

Table 1 lists the salient features that differentiate the different Hawk 2XL model numbers.

Table 1: Drive model number vs. differentiating features

Fast SCSI-3

<table>
<thead>
<tr>
<th>Model number</th>
<th># Heads</th>
<th>I/O Ckts</th>
<th>#I/O connector</th>
<th>I/O data bus bits</th>
<th>Interface Data transfer rate (Mbytes/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST32151N</td>
<td>8</td>
<td>single-ended</td>
<td>50</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>ST32151W</td>
<td>8</td>
<td>single-ended</td>
<td>68</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>ST32151WC</td>
<td>8</td>
<td>single-ended</td>
<td>80</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>ST31051N</td>
<td>4</td>
<td>single-ended</td>
<td>50</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>ST31051W</td>
<td>4</td>
<td>single-ended</td>
<td>68</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>ST31051WC</td>
<td>4</td>
<td>single-ended</td>
<td>80</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

ULTRA SCSI-3 [1]

<table>
<thead>
<tr>
<th>Model number</th>
<th># Heads</th>
<th>I/O Ckts</th>
<th>#I/O connector</th>
<th>I/O data bus bits</th>
<th>Interface Data transfer rate (Mbytes/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST32155N</td>
<td>8</td>
<td>single-ended</td>
<td>50</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>ST32155W</td>
<td>8</td>
<td>single-ended</td>
<td>68</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>ST32155WC</td>
<td>8</td>
<td>single-ended</td>
<td>80</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>ST31055N</td>
<td>4</td>
<td>single-ended</td>
<td>50</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>ST31055W</td>
<td>4</td>
<td>single-ended</td>
<td>68</td>
<td>16</td>
<td>40</td>
</tr>
<tr>
<td>ST31055WC</td>
<td>4</td>
<td>single-ended</td>
<td>80</td>
<td>16</td>
<td>40</td>
</tr>
</tbody>
</table>

From this point on in this Product Manual the reference to Hawk 2XL family models is referred to as “the drive” (unless reference to individual models are necessary).

The drive printed circuit board is referred to as a PCB.

[1] ULTRA SCSI is Seagate’s name for the ANSI proposed “FAST-20” interface.
*Model “N” version with 50 pin SCSI I/O connector

Figure 1. Hawk 2XL family drive
2.0 Applicable standards and reference documentation

The drive has been developed as a system peripheral to the highest standards of design and construction. The drive depends upon its host equipment to provide adequate power and environment in order to achieve optimum performance and compliance with applicable industry and governmental regulations. Special attention must be given in the areas of safety, power distribution, shielding, audible noise control, and temperature regulation. In particular, the drive must be securely mounted in order to guarantee the specified performance characteristics. Mounting by bottom holes must meet the requirements of Section 8.4.

2.1 Standards

The Hawk 2XL Family complies with Seagate standards as noted in the appropriate sections of this Manual and the Seagate SCSI Interface Manual, P/N 77738479 (Vol. 2).

The Hawk 2XL Family is a UL Recognized component per UL 1950 and a CSA Certified component per CAN/CSA-C22.2 No. 950-M89. It also meets the requirements of DIN VDE 0805/05.90 and EN60950: 1988 (IEC 950).

2.1.1 Electromagnetic compatibility

The drive, as delivered, is designed for system integration and installation into a suitable enclosure prior to use. As such the drive is supplied as a subassembly and is not subject to Subpart J of Part 15 of the FCC Rules and Regulations nor the Radio Interference Regulations of the Canadian Department of Communications. However, the unit has been tested using proper shielding and grounding and found to be compliant with Class A limits of the FCC Rules and the Regulations of the Canadian Department of Communications. The physical design characteristics of the drive serve to minimize radiation when installed in an enclosure that provides reasonable shielding. As such, the drive is capable of meeting the Class B limits of the FCC Rules and Regulations of the Canadian Department of Communication. However, it is the user’s responsibility to assure that the drive meets the appropriate EMI requirements in their system. Shielded I/O cables may be required if the enclosure does not provide adequate shielding. If the I/O cables are external to the enclosure, shielded cables should be used, with the shields grounded to the enclosure or to the host controller, but not both.

2.1.2 Electromagnetic susceptibility

As a component assembly, the drive is not required to meet any susceptibility performance requirements. It is the responsibility of those integrating the drive within their systems to perform those tests required and design their system to ensure that equipment operating in the same system as the drive or external to the system does not adversely affect the performance of the drive. See Section 5.1.1 and Table 2, DC power requirements.

2.2 Electromagnetic Compliance for the European Union

Seagate uses an independent laboratory to confirm compliance to the above directives. The drive was tested in a representative system for typical applications. The selected system represents the most popular characteristics for test platforms. The system configurations include:

- 486, Pentium, and PowerPC Microprocessors
- 3.5-inch Floppy Disc Drive
- Keyboard
- Monitor/Display

Although the test system with this Seagate model complies to the directives, we cannot guarantee that all systems will comply. The computer manufacturer or system integrator shall conform EMC compliance and provide CE Marking for their product.
2.3 Reference documents

Installation Guide Seagate P/N 77767490
SCSI Interface Manual Seagate P/N 77738479

ANSI Small Computer System Interface (SCSI): Document Number ANSI3.131-1986 (X3T9/84.40 Rev. 1B) (X3T9.2/82-2 Rev. 17B), X3T9.2/86-109 Revision 10H (SCSI-2) and X3T9.2-184 Rev. 4 (SCSI-3).

ANSI - draft proposed: Document Number X3T10/1071D, SCSI-3 FAST-20 revision 6.

Package Test Specification Seagate P/N 30190-001 (under 100 lb.)
Package Test Specification Seagate P/N 30191-001 (over 100 lb.)

In case of conflict between this document and any referenced document, this document takes precedence.
3.0 General description

The drives are a member of a family of low cost, high performance, highly reliable, random access storage devices designed to meet the needs of the OEM marketplace.

The drive records and recovers data on 3.5 inch (89 mm) fixed discs.

The drive supports the Small Computer System Interface as described in the ANSI SCSI-2 and SCSI-3 Interface Manuals to the extent described in this product Manual (Vol. 1), which defines the product performance characteristics of the Hawk 2XL Family of drives, and the SCSI Interface Product Manual P/N 77738479 (Vol. 2, Version 2) which describes the general interface characteristics of this and other families of Seagate 3.5-inch drives.

The drive interface supports multiple initiators, disconnect/reconnect, self-configuring host software and automatic features that relieve the host from the necessity of knowing the physical characteristics of the targets (logical block addressing is used).

The Head/Disc Assembly (HDA) is environmentally sealed at the factory. Air recirculates within the Head/Disc (HDA) through a nonreplaceable filter to maintain a contamination free head/disc environment.

Refer to Figure 2, an exploded view of the drive. NEVER disassemble the Head/Disc Assembly (HDA). This exploded view is for information only. Do not attempt to service items in the sealed environmental enclosure (heads, media, actuator, etc.) as this requires special facilities. The drive contains no parts replaceable by the user. The drive warranty is voided if the HDA is opened.

The Hawk 2XL Family drives use a dedicated landing zone at the innermost radius of the media to eliminate the possibility of destroying or degrading data by landing in the data zone. The drive automatically goes to the landing zone when the power is removed.

The Hawk 2XL Family drives incorporate an automatic shipping lock which prevents potential damage to the heads and discs that result from movement during shipping and handling. The shipping lock is automatically disengaged when power is applied to the drive and the head load process begins.

The Hawk 2XL Family drives decode track location from the servo data embedded on each surface to eliminate mechanical transducer adjustments and related reliability concerns.

The Hawk 2XL Family drives use a high performance actuator assembly that consists of a low inertia, balanced, patented, straight arm design that provides excellent performance with minimum power dissipation.
Figure 2. Hawk 2XL family drive
3.1 Standard features

The Hawk 2XL Family has the following standard features:

- Integrated SCSI Controller with reduced complexity SCSI code
- Single-ended SCSI drivers and receivers
- Asynchronous and Synchronous data transfer protocol
- Firmware downloadable via SCSI interface
- Flawed sector reallocation at format time
- Programmable auto write and read reallocation
- Reallocation of defects on command (Post Format)
- 96 bit Reed-Solomon error correcting code
- Sealed Head/Disc Assembly
- No preventative maintenance or adjustment required
- Dedicated head landing zone
- Embedded servo data rather than a separate servo data surface
- Self diagnostics performed at power on
- 1:1 Interleave
- Zoned Bit Recording (ZBR)
- Vertical, horizontal, or top down mounting
- Dynamic spindle brake
- Permanently mounted terminators on “N” and “W” models, enabled by installation of a jumper plug.
- 256 K byte data buffer (512K byte data buffer for “W” and “WC” models and all Ultra SCSI models)
- Hot Plug compatibility (Section 9.6.4.3 lists proper host connector needed)
- SCAM plug-n-play compliant [1]
- ULTRA SCSI (Models ST32155 and ST31055)

3.2 Media characteristics

The media used on the drive has a diameter of approximately 3.5 inches (89 mm). The aluminum substrate is coated with a thin film magnetic material, overcoated with a proprietary protective layer for improved durability and environmental protection.

3.3 Performance

- Programmable multi-segmentable cache buffer
- 5411 RPM Spindle. Average latency = 5.54 msec
- Command Queuing of up to 64 commands
- Background processing of queue
- Supports start and stop commands (spindle stops spinning)
- Low audible noise for office environment
- Low power consumption

3.4 Reliability

- 800,000 hour MTBF
- Adaptive servo calibration for improved seek performance
- LSI circuitry
- Balanced low mass rotary voice coil actuator
- 5 year warranty for ST32151 and ST32155; 3 year warranty for ST31051 and ST31055

[1] Supports SCAM Level 1 at the moment. Will support Level 2 when all presently unresolved requirements are fully defined. As a factory installed option SCAM can be turned off.
3.5 **Unformatted and formatted capacities**

Formatted capacity depends on the number of spare reallocation sectors reserved and the number of bytes per sector. The following table shows some typical 512 byte sector size [1] formatted capacities (rounded off).

<table>
<thead>
<tr>
<th>Spare Sector or Cylinders</th>
<th>ST32151 GB</th>
<th>ST32155 GB</th>
<th>ST31051 GB</th>
<th>ST31055 GB</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Spares</td>
<td>2.18</td>
<td>1.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five Spare Sectors per Cylinder [2]</td>
<td>-</td>
<td>1.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ten Spare Sectors per Cylinder [2]</td>
<td>2.15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The standard OEM model is as follows:

<table>
<thead>
<tr>
<th>Formatted Data Block Size 512 Byte/Sector</th>
<th>Unformatted</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST32151/ST32155</td>
<td>2.148 GB[4]</td>
</tr>
</tbody>
</table>

Notes.

[1] Sector size selectable when formatted at factory.
[2] All spare sectors are on one track.
[3] Spare cylinders are on the two inner tracks.
[4] Sparing equivalent to eight spare sector per cylinder (all spare sectors are on one track), two spare cylinders/unit.[3]
[5] Sparing equivalent to five spare sectors per cylinder (all spare sectors are on one track), two spare cylinders/unit.[3]

3.6 **Factory installed accessories**

OEM Standard drives are shipped with Installation Guide P/N 77767490 (unless otherwise specified). The factory also ships with the drive a small bag of the two jumper plug types used for the option select jumper headers.

3.7 **Options (factory installed)**

All customer requested options are incorporated during production or packaged at the manufacturing facility before shipping. Some of the options available are (not an exhaustive list of possible options):

- The capacities shown in Section 3.5. Other capacities can be ordered depending on sparing scheme and sector size requested.
- Black plastic front panel. Other panel colors may be specially ordered. Panel has a green, rectangular LED drive activity indicator lens. The indicator glows when the drive is selected.
- Single unit shipping pack. The drive is normally shipped in bulk packaging to provide maximum protection against transit damage. Units shipped individually require additional protection as provided by the single unit shipping pack. Users planning single unit distribution should specify this option.
- The Installation Guide (P/N 77767490) is usually included with each standard OEM drive shipped, but extra copies may be ordered.

3.8 **Accessories (user installed)**

The following accessories are available. All accessories may be installed in the field.

- Front Panel Kit (with green rectangular LED lens).
- Single unit shipping pack.
- Adapter Accessory Frame Kit P/N 75790701. This kit adapts a 3.5 inch Model “N” and “W” drives to fit in a 5.25 inch drive mounting space. The frame does not work for “WC” model drives which plug directly into a bulkhead or backplane connector.
4.0 Performance characteristics

4.1 Internal drive characteristics (transparent to user)

<table>
<thead>
<tr>
<th></th>
<th>ST32151/ST32155</th>
<th>ST31051/ST31055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Capacity</td>
<td>2.54</td>
<td>1.26</td>
</tr>
<tr>
<td>Read/Write Heads</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Bytes/Track</td>
<td>75,900</td>
<td>75,900</td>
</tr>
<tr>
<td>Bytes/Surface</td>
<td>318</td>
<td>315</td>
</tr>
<tr>
<td>Tracks/Surface, Total</td>
<td>4176</td>
<td>4176</td>
</tr>
<tr>
<td>Servo Heads</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Internal Data Rate</td>
<td>44 - 66</td>
<td>44 - 66</td>
</tr>
<tr>
<td>Disc Rotational Speed</td>
<td>5411 ± 0.5%</td>
<td>5411 ± 0.5%</td>
</tr>
<tr>
<td>Average Rotational Latency</td>
<td>5.54</td>
<td>5.54</td>
</tr>
</tbody>
</table>

4.2 SCSI Seek performance characteristics (visible to user) [6]*

The values given in Section 4.2.1 apply to all models of the Hawk 2XL family unless otherwise specified. Refer to Section 9.9 and to the SCSI-2 Interface Product Manual 77738479 for additional timing details.

4.2.1 Access time

<table>
<thead>
<tr>
<th>Drive Level</th>
<th>Read ms</th>
<th>Write ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average</td>
<td>[3]</td>
<td>10.4</td>
</tr>
<tr>
<td>Max.</td>
<td>[2]</td>
<td>11.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive Level</th>
<th>Read ms</th>
<th>Write ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Track</td>
<td>[3]</td>
<td>2.7</td>
</tr>
<tr>
<td>Max.</td>
<td>[2]</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive Level</th>
<th>Read ms</th>
<th>Write ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Stroke</td>
<td>[3]</td>
<td>20.4</td>
</tr>
<tr>
<td>Max.</td>
<td>[2]</td>
<td>23.9</td>
</tr>
</tbody>
</table>

*[] All notes for Sections 4.2 are listed at end of Section 4.2.3.
4.2.2 Format command execution time (minutes) [1]

<table>
<thead>
<tr>
<th></th>
<th>ST32151/ST32155</th>
<th>ST31051/ST31055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum (with verify)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Maximum (no verify)</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

4.2.3 Generalized performance characteristics

Minimum Sector Interleave (all Hawk 2XL models) 1 to 1

Data Transfer Rate (1 sector) - 512 Byte Sector, Data Buffer To/From Disc Media:

<table>
<thead>
<tr>
<th></th>
<th>ST32151/ST32155</th>
<th>ST31051/ST31055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>5.1 MByte/sec</td>
<td>5.1 MByte/sec</td>
</tr>
<tr>
<td>Avg.</td>
<td>7.1 MByte/sec</td>
<td>7.1 MByte/sec</td>
</tr>
<tr>
<td>Max.</td>
<td>8.2 MByte/sec</td>
<td>8.2 MByte/sec</td>
</tr>
</tbody>
</table>

Data Transfer Rate (< 1 Track) - 512 Byte Sector, Data Buffer To/From Disc Media:

<table>
<thead>
<tr>
<th></th>
<th>ST32151/ST32155</th>
<th>ST31051/ST31055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>3.8 MByte/sec</td>
<td>3.8 MByte/sec</td>
</tr>
<tr>
<td>Avg.</td>
<td>5.6 MByte/sec</td>
<td>5.6 MByte/sec</td>
</tr>
<tr>
<td>Max.</td>
<td>6.4 MByte/sec</td>
<td>6.4 MByte/sec</td>
</tr>
</tbody>
</table>

SCSI Interface Data Transfer Rate (Asynchronous) [5] (all Hawk 2XL models):

<table>
<thead>
<tr>
<th></th>
<th>ST32151/ST32155</th>
<th>ST31051/ST31055</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min.</td>
<td>5.1 MByte/sec</td>
<td>5.1 MByte/sec</td>
</tr>
<tr>
<td>Avg.</td>
<td>7.1 MByte/sec</td>
<td>7.1 MByte/sec</td>
</tr>
<tr>
<td>Max.</td>
<td>8.2 MByte/sec</td>
<td>8.2 MByte/sec</td>
</tr>
</tbody>
</table>

The remainder of the specifications of Section 4.2.3 apply to all Hawk 2XL models:

Sector Sizes Variable (180 to 4096 bytes per sector, but factory configurable only) in even number of bytes per sector.

Synchronous Transfer Rate for ULTRA SCSI-2 models from 1.25 MBytes/sec to 20.0 MBytes/sec for 8 bit data bus and 40.0 MBytes/sec for 16 bit data bus. (see Section 9.5)

Synchronous Transfer Rate for Fast SCSI-2 models from 1.25 MBytes/sec to 10.0 MBytes/sec for 8 bit data bus and 20.0 MBytes/sec for 16 bit data bus. (see Section 9.5)

Read/Write consecutive sectors on a track Yes

Flaw reallocation performance impact (For flaws reallocated at format time using the spare sectors per cylinder reallocation scheme.) [7] Negligible

Flaw reallocation performance impact (For flaws reallocated at format time using the spare tracks per volume reallocation scheme.) 22.16 msec (typical)

Overhead time for head switch (512 byte sectors) 1 msec

Overhead time for one track cylinder switch <3 msec Typical

Average rotational latency 5.54 msec
Notes for Sections 4.2.

[1] Execution time measured from receipt of the last Byte of the Command Descriptor Block (CDB) to the request for a Status Byte Transfer to the Initiator (excluding connect/disconnect).

[2] Maximum times are specified over the worst case conditions of temperature, voltage margins and drive orientation. When comparing specified access times, care should be taken to distinguish between typical access times and maximum access times. The best comparison is obtained by system benchmark tests conducted under identical conditions. Maximum times do not include error recovery.

[3] Typical Access times are measured under nominal conditions of temperature, voltage, and horizontal orientation as measured on a representative sample of drives.

[4] Assumes no errors and no sector has been relocated.

[5] Rate measured from the start of the first sector transfer to or from the Host.

[6] Assumes system ability to support the rate given and no cable loss.

4.3 Start/stop time

After DC power has been applied, the drive becomes ready within 20 seconds if the Motor Start Option is disabled (i.e. the motor starts as soon as the power has been applied). During this time the drive responds to some commands over the SCSI interface in less than 3 seconds. Stop time is 20 seconds from removal of DC power.

If the Motor Start Option is enabled, the internal controller accepts the commands listed in the SCSI Interface Product Manual* less than 3 seconds after DC power has been applied. After the Motor Start Command has been received the drive becomes ready for normal operations within 13 seconds typically. The Motor Start Command can also be used to command the drive to stop the spindle*.

There is no power control switch on the drive.

4.4 Prefetch/multi-segmented cache control

The drive provides prefetch (read look-ahead) and multi-segmented cache control algorithms that in many cases can enhance system performance. “Cache” as used herein refers to the drive buffer storage space when it is used in “cache” operations. To select prefetch and cache features the host sends the Mode Select command with the proper values in the applicable bytes in Mode Page 08h. Prefetch and cache operation are independent features from the standpoint that each is enabled and disabled independently via the Mode Select command. However, in actual operation the prefetch feature overlaps cache operation somewhat as is noted in Sections 4.5.1 and 4.5.2.

All default cache and prefetch Mode parameter values (Mode Page 08h) for standard OEM versions of this drive family are given in Tables 8a and 8b.

4.5 Cache operation

In general, on “N” models 202,448 bytes of the 256 Kbyte physical buffer space, and on “W” and “WC” models, 431,136 Kbytes of the 512 Kbytes of physical buffer space in the drive can be used as storage space for cache operations. The buffer can be divided into logical segments (Mode Select Page 08h, byte 13) from which data is read and to which data is written. The drive maintains a table of logical block disk medium addresses of the data stored in each segment of the buffer. If cache operation is enabled (RCD bit = 0 in Mode Page 08h, byte 2, bit 0. See SCSI Interface Product Manual P/N 77738479), data requested by the host with a Read command is retrieved from the buffer (if it is there), before any disc access is initiated. If cache operation is not enabled, the buffer (still segmented with required number of segments) is still used, but only as circular buffer segments during disc medium read operations (disregarding Prefetch operation for the moment). That is, the drive does not check in the buffer segments for the requested read data, but goes directly to the medium to retrieve it. The retrieved data merely passes through some buffer segment on the way to the host. On a cache “miss”, all datatransfers to the host are in accordance with “buffer-full” ratio rules. On a cache “hit” the drive ignores the “buffer-full” ratio rules. See explanations associated with Mode page 02h (disconnect/reconnect control) in the SCSI Interface Product Manual P/N 77738479.
The following is a simplified description of a read operation with cache operation enabled:

Case A - A Read command is received and the first logical block (LB) is already in cache:

1. Drive transfers to the initiator the first LB requested plus all subsequent contiguous LB’s that are already in the cache. This data may be in multiple segments.
2. When the requested LB is reached that is not in any cache segment, the drive fetches it and any remaining requested LB’s from the disc and puts them in a segment of the cache. The drive transfers the remaining requested LB’s from the cache to the host in accordance with the disconnect/reconnect specification mentioned above.
3. If the prefetch feature is enabled, refer to Section 4.5.2 for operation from this point.

Case B - A Read command requests data, the first LB of which is not in any segment of the cache:

1. The drive fetches the requested LB’s from the disc and transfers them into a segment, and from there to the host in accordance with the disconnect/reconnect specification referred to in case A.
2. If the prefetch feature is enabled, refer to Section 4.5.2 for operation from this point.

Each buffer segment is actually a self-contained circular storage (wrap-around occurs), the length of which is an integer number of disc medium sectors. The wrap-around capability of the individual segments greatly enhances the buffer’s overall performance as a cache storage, allowing a wide range of user selectable configurations, which includes their use in the prefetch operation (if enabled), even when cache operation is disabled (see Section 4.5.2). The number of segments may be selected using the Mode Select command, but the size can not be directly selected. Size is selected only as a by-product of selecting the segment number specification. The size in Kbytes of each segment is reported by the Mode Sense command page 08h, bytes 14 and 15. If a size specification is sent by the host in a Mode Select command (bytes 14 and 15) no new segment size is set up by the drive, and if the “STRICT” bit in Mode page 00h (byte 2, bit 1) is set to one, the drive responds as it does for any attempt to change unchangeable parameters (see SCSI I/O Product Manual P/N 77738479).

The drive supports operation of any integer number of segments from 1 to 16.6

4.5.1 Caching write data

Write caching is a write operation by the drive that makes use of a drive buffer storage area where the data to be written to the medium is stored in one or more segments while the drive performs the write command.

Write caching is enabled along with read caching. For write caching, the same buffer space and segmentation is used as set up for read functions. The buffer segmentation scheme is set up or changed independently, having nothing to do with whether or not read and write caching is enabled or disabled. When a write command is issued, the cache is first checked to see if any logical blocks that are to be written are already stored in the cache from a previous read or write command. If there are, the respective cache segments are cleared. The new data is cached for subsequent Read commands.

If the number of write data logical blocks exceeds the size of the segment being written into when the end of the segment is reached, the data is written into the beginning of the same cache segment, overwriting the data that was written there at the beginning of the operation. However, the drive does not overwrite data that has not yet been written to the medium.

Tables 8a and 8b show Mode default settings for the drives.

4.5.2 Prefetch operation

If the Prefetch feature is enabled, data in contiguous logical blocks on the disc immediately beyond that which was requested by a Read command can be retrieved and stored in the buffer for immediate transfer from the buffer to the host on subsequent Read commands that request those logical blocks (this is true even if “cache” operation is disabled). Though the prefetch operation uses the buffer as a “cache”, finding the requested data in the buffer is a prefetch “hit”, not a “cache” operation “hit”. Prefetch is enabled using Mode Select page 08h, byte 12, bit 5 (Disable Read Ahead - DRA bit). DRA bit = 0 enables prefetch. Since data that is prefetched replaces data already in some buffer segment(s), the host can limit the amount of prefetch data to optimize system performance. The max prefetch field (bytes 8 and 9) limits the amount of prefetch. The drive does not use the prefetch “ceiling” field (bytes 10 and 11).

During a prefetch operation, the drive crosses a cylinder boundary to fetch more data only if the Discontinuity (DISC) bit is set to one in bit 4 of byte 2 of Mode parameters page 08h.
Whenever prefetch (read look-ahead) is enabled (enabled by DRA = 0), it operates under the control of ARLA (Adaptive Read Look-Ahead). If the host uses software interleave, ARLA enables prefetch of contiguous blocks from the disk when it senses that a prefetch “hit” will likely occur, even if two consecutive read operations were not for physically contiguous blocks of data (e.g. “software interleave”). ARLA disables prefetch when it decides that a prefetch “hit” will not likely occur. If the host is not using software interleave, and if two sequential read operations are not for contiguous blocks of data, ARLA disables prefetch, but as long as sequential read operations request contiguous blocks of data, ARLA keeps prefetch enabled.
5.0 Reliability specifications

The following reliability specifications assume correct host/drive operational interface, including all interface
timings, power supply voltages, environmental requirements and drive mounting constraints (see Section 8.4)

Seek Errors Less than 1 in 10^7 seeks
Read Error Rates [1]
 Unrecovered Data Less than 1 sector in 10^{14} bits transferred
 Miscorrected Data Less than 1 sector in 10^{21} bits transferred
MTBF 800,000
Service Life 5 years
Preventive Maintenance None required

Note.
[1] Error rate specified with automatic retries and data correction with ECC enabled and all flaws reallocated.

5.1 Error rates

The error rates stated in this specification assume the following:
a. The drive is operated per this specification using DC Power as defined in this Manual (see Section 6.2).
b. The drive has been formatted with the SCSI FORMAT commands.
c. Errors caused by media defects or host system malfunctions are excluded from error rate computations.
 Refer to Section 3.2, “Media Characteristics.”

5.1.1 Environmental interference

When evaluating systems operation under conditions of Electromagnetic Interference (EMI), the performance
of the drive within the system shall be considered acceptable if the drive does not generate an unrecoverable
condition.

An unrecoverable error, or unrecoverable condition, is defined as one that:
1. Is not detected and corrected by the drive itself;
2. Is not capable of being detected from the error or fault status provided through the drive or SCSI interface;
 or
3. Is not capable of being recovered by normal drive or system recovery procedures without operator inter-
 vention.

5.1.2 Read errors

Before determination or measurement of read error rates:
a. The data that is to be used for measurement of read error rates must be verified as being written correctly
 on the media.
b. All media defect induced errors must be excluded from error rate calculations.

5.1.3 Write errors

Write errors can occur as a result of media defects, environmental interference, or equipment malfunction.
Therefore, write errors are not predictable as a function of the number of bits passed.

If an unrecoverable write error occurs because of an equipment malfunction in the drive, the error is classified
as a malfunction affecting MTBF. Unrecoverable write errors are those which cannot be corrected within two
attempts at writing the record with a read verify after each attempt (excluding media defects).
5.1.4 Seek errors

A seek error is defined as a failure of the drive to position the heads to the addressed track. There shall be no more than one recoverable seek error in 10^7 physical seek operations. After detecting an initial seek error, the drive automatically reseeks to the addressed track up to 3 times. If a reseek is successful, the Extended Sense reports a seek positioning error (15h), no seek complete error (02h), or track follow error (09h), and the sense key reports a recovered error (1h). If all three reseeks fail, a seek positioning error (15h) is reported with a Medium error (3h) or Hardware error (4h) reported in the Sense Key. This is an unrecoverable seek error. Unrecoverable seek errors are classified as failures for MTBF calculations. Refer to Section 5.1.1.2 of SCSI-2 Interface Product Manual P/N 77738479 for Request Sense information.

5.2 Reliability and service

5.2.1 Mean time between failure

The production disc drive shall achieve an MTBF of 800,000 hours when operated in a benign atmosphere at an average disc drive ambient temperature of 95°F (35°C) or less as measured per this Product Manual, Section 6.4.1. Short-term excursions up to the specification limits of the operating environment will not affect MTBF performance.

The following expression defines MTBF

$$\text{MTBF per measurement period} = \frac{\text{Estimated power-on operating hours in the period}}{\text{Number of drive failures in the period}}$$

Estimated power-on operation hours means power-up hours per disc drive times the total number of disc drives in service. Each disc drive shall have accumulated at least nine months of operation. Data shall be calculated on a rolling average base for a minimum period of six months.

Drive failure means any stoppage or substandard performance caused by drive malfunction.

5.2.2 Preventive maintenance

No routine scheduled preventive maintenance shall be required.

5.2.3 Service life

The drive shall have a useful service life of five years. Depot repair or replacement of major parts is permitted during the lifetime (see Section 5.2.4).

5.2.4 Service philosophy

Special equipment is required to repair the drive HDA. In order to achieve the above service life, repairs must be performed only at a properly equipped and staffed service and repair facility. Troubleshooting and repair of PCBs in the field is not recommended, because of the extensive diagnostic equipment required for effective servicing. Also, there are no spare parts available for this drive. Drive warranty is voided if the HDA is opened.

5.2.5 Service tools

No special tools are required for site installation or recommended for site maintenance. Refer to Section 5.2.4. The depot repair philosophy of the drive precludes the necessity for special tools. Field repair of the drive is not practical since there are no user purchasable parts in the drive.

5.2.6 Product warranty

Beginning on the date of shipment to customer and continuing for a period of five years, Seagate warrants that each product (including components and subassemblies) or spare part that fails to function properly under normal use due to defect in materials or workmanship or due to nonconformance to the applicable specifications will be repaired or replaced, at Seagate’s option and at no charge to customer, if returned by customer at customer’s expense to Seagate’s designated facility in accordance with Seagate’s Warranty Procedure. Seagate will pay for transporting the repair or replacement item to customer. For more detailed warranty information refer to the Standard terms and conditions of Purchase for Seagate products.
Shipping:
When transporting or shipping a drive, a Seagate approved container must be used. Keep your original box. They are easily identified by the Seagate Approved Package label. Shipping a drive in a non-approved container voids the drive warranty.

Seagate repair centers may refuse receipt of components improperly packaged or obviously damaged in transit. Contact your Authorized Seagate Distributor to purchase additional boxes. Seagate recommends shipping by an air-ride carrier experienced in handling computer equipment.

Product repair and return information
Seagate customer service centers are the only facilities authorized to service Seagate drives. Seagate does not sanction any third-part repair facilities. Any unauthorized repair or tampering with the factory-seal voids the warranty.
6.0 Physical/electrical specifications

6.1 AC power requirements

Not applicable to this drive.

6.2 DC power requirements

The voltage and current requirements for a single drive are shown in the following table. Values indicated apply at the drive power connector. The single ended power requirements includes the internal disc drive SCSI I/O termination.

Table 2: DC power requirements

<table>
<thead>
<tr>
<th>Voltage</th>
<th>ST32151/ST32155</th>
<th>ST31051/ST31055</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 V</td>
<td>+5 V</td>
<td>+5 V</td>
</tr>
<tr>
<td>+12 V</td>
<td>+12 V</td>
<td>+12 V</td>
</tr>
<tr>
<td>Regulation [4]</td>
<td>±5%</td>
<td>±5%</td>
</tr>
<tr>
<td>Average Idle Current [1]</td>
<td>0.32 A</td>
<td>0.34 A</td>
</tr>
<tr>
<td>Maximum Starting Current (Peak)[2]</td>
<td>0.57 A</td>
<td>1.8 A</td>
</tr>
<tr>
<td>Delayed Motor Start (Max) [3]</td>
<td>0.52 A</td>
<td>0.22 A</td>
</tr>
<tr>
<td>Operating Current [5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typ. [1]</td>
<td>0.65 A</td>
<td>0.65 A</td>
</tr>
<tr>
<td>Max. [1]</td>
<td>0.69 A</td>
<td>0.69 A</td>
</tr>
<tr>
<td>Max. (Peak)</td>
<td>1.0 A</td>
<td>1.0 A</td>
</tr>
</tbody>
</table>

[1] Measured with average reading DC ammeter. Instantaneous current peaks will exceed these values.
[2] A droop of up to -10% is permissible during the T2 portion of +12 V power up (see Figure 3).
[3] This condition occurs when the Motor Start Option is enabled and the drive has not yet received a Start Motor command.
[5] Instantaneous peaks less than 5 msec in duration are allowed.

General Notes from Table 2:

1. At power-up, the motor current regulator limits the 12 volt current to a peak value of less than 1.8 amperes, although instantaneous peaks may occur as stated in [5] above.
2. Operating condition is defined as random seek read of 64 blocks.
3. Minimum operating current loading for each supply voltage is not less than 38% of the maximum operating current shown.
4. The +5 and +12 volt supplies shall employ separate ground returns. Where power is provided to multiple drives from a common supply, careful consideration for individual drive power requirements should be noted. Where multiple units are powered on simultaneously, the peak starting current must be available to each device.

6.2.1 Conducted noise immunity

Noise is specified as a periodic and random distribution of frequencies covering a band from DC to 10 mHz. Maximum allowed noise values given below are peak to peak measurements and apply at the drive power connector.

\[+5 \text{ V} = 150 \text{ mV pp from} 0 \text{ to} 50 \text{ kHz} \text{ and} 45 \text{ mA pp from} 50 \text{ kHz} \text{ to} 10 \text{ MHz.}\]
\[+12 \text{ V} = 150 \text{ mV pp from} 0 \text{ to} 50 \text{ kHz} \text{ and} 60 \text{ mA pp from} 50 \text{ kHz} \text{ to} 10 \text{ MHz.}\]
6.2.2 Power sequencing

The drive does not require power sequencing. The drive protects against inadvertent writing during power-up and down. Daisy-chain operation requires that power be maintained on the terminated drive to ensure proper termination of the peripheral I/O cables. For the benefit of the system power supply, the drive power-up can be delayed using the motor start delay option.

6.2.3 Current profile

Figure 3 identifies the drive +5 V and +12 V current profile. The current during the various times is as shown:

- **T** - Power is applied to the drive.
- **T1** - Controller self tests are performed.
- **T2** - Spindle begins to accelerate under current limiting after performing drive internal diagnostics. See Note 1 of Table 2.
- **T3** - The heads move from the landing zone to the data area.
- **T4** - The adaptive servo calibration sequence is performed.
- **T5** - Calibration is complete and the drive is ready for reading and writing.

Note. All times and currents are typical. See Table 2 for maximum current requirements.

Figure 3. Typical Hawk 2XL family drive +5 V and +12 V current profile
6.3 Power dissipation

For drives with single ended interface circuits, typical operating random read power dissipation is 7.5 watts (25.6 BTUs per hour) of DC power average at nominal voltages. Typical power dissipation under idle conditions is 6.0 watts (20.5 BTUs per hour).

6.4 Environmental limits

Temperature and humidity values experienced by the drive must be such that condensation does not occur on any drive part. Altitude and atmospheric pressure specifications are referenced to a standard day at 58.7°F (14.8°C). Maximum Wet Bulb temperature is 82°F (28°C).

6.4.1 Temperature

a. Operating

The drive meets all specifications over a 41°F to 131°F (5°C to 55°C) drive ambient temperature range with a maximum temperature gradient of 36°F (20°C) per hour. The enclosure for the drive should be designed such that the temperatures at the locations specified in Table 3, column 1 are not exceeded. Air flow may be needed to achieve these temperature values. Operation at case temperatures [4] above these values may adversely affect the drives ability to meet specifications.

The MTBF specification for the drive is based on operating at an ambient temperature of 95°F (35°C). Occasional excursions to drive ambient temperatures of 55°C or 5°C may occur without impact to specified MTBF. To achieve the specified MTBF, the values of Table 3, column 2 must be considered maximum average operating case temperatures. Air flow may be needed to achieve these temperatures. See Section 8.3. Continual or sustained operation at case temperatures above these values may degrade MTBF.

Table 3: Temperatures PCB and HDA (see Figure 4)

<table>
<thead>
<tr>
<th>Items in Figure 4</th>
<th>Component on PCB Number</th>
<th>Column 1 Maximum Case [4] Temperatures (°C) Operating (55° Ambient) [2]</th>
<th>Column 2 Typical Case [4] Temperatures (°C) at 35°C Ambient [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDA [3]</td>
<td></td>
<td>65</td>
<td>45</td>
</tr>
<tr>
<td>U2, U4, U5, U13</td>
<td>1, 2, 3</td>
<td>91</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td>98</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>96</td>
<td>53</td>
</tr>
</tbody>
</table>

Note.

[1] The temperatures shown in Column 2 were measured on an unmounted drive lying on its side during random write/read at 100% duty cycle in still air.

[2] The temperatures in Column 1 are calculated and may not reflect actual operating values. Sufficient cooling air may be required to ensure that these values are not exceeded.

[3] Measure HDA temp at point labeled “HDA” on Figure 4.

b. Non-Operating

-40° to 158°F (-40° to 70°C) package ambient with a maximum gradient of 45°F (25°C) per hour. This specification assumes that the drive is packaged in the shipping container designed by Seagate for use with drive.
6.4.2 Relative humidity

The values below assume that no condensation on the drive occurs.

a. Operating
 8% to 80% relative humidity with a maximum gradient of 10% per hour.

b. Non-Operating
 5% to 95% relative humidity.

Figure 4. Locations of components (listed in Table 3)
6.4.3 Effective altitude (sea level)

a. Operating
-1000 to +10,000 feet (-305 to +3048 metres)

b. Non-Operating
-1000 to +40,000 feet (-305 to +12,210 metres)

6.4.4 Shock and vibration

Shock and vibration limits specified in this document are measured directly on the drive chassis. If the drive is installed in an enclosure to which the stated shock and/or vibration criteria is applied, resonances may occur internally to the enclosure resulting in drive movement in excess of the stated limits. If this situation is apparent, it may be necessary to modify the enclosure to minimize drive movement.

The limits of shock and vibration defined within this document are specified with the drive mounted by any of the four methods shown in Figure 5, and in accordance with the restrictions of Section 8.4. Orientation of the side nearest the LED may be up or down.

6.4.4.1 Shock

a. Operating
The drive, as installed for normal operation, shall operate error free while subjected to intermittent shock not exceeding 10 g’s at a maximum duration of 11 ms (half sinewave). Shock may be applied in the X, Y, or Z axis.

b. Non-operating
The limits of nonoperating shock shall apply to all conditions of handling and transportation. This includes both isolated drives and integrated drives.

The drive subjected to nonrepetitive shock not exceeding 75 g’s at a maximum duration of 11 ms (half sine-wave) shall not exhibit device damage or performance degradation. Shock may be applied in the X, Y, or Z axis.

c. Packaged
Disc drives shipped as loose load (not palletized) general freight will be packaged to withstand drops from heights as defined in the table below. For additional details refer to specifications 30190-001 (under 100 lbs) or 30191-001 (over 100 lbs).

<table>
<thead>
<tr>
<th>Package Size (Cu.In.)</th>
<th>Packaged/Product Weight lb. (kg)</th>
<th>Drop Height in. mm</th>
</tr>
</thead>
<tbody>
<tr>
<td><600</td>
<td>Any</td>
<td>60 (1524)</td>
</tr>
<tr>
<td>600-1800</td>
<td>0-20 (0 to 9.1)</td>
<td>48 (1219)</td>
</tr>
<tr>
<td>>1800</td>
<td>0-20 (0 to 9.1)</td>
<td>42 (1067)</td>
</tr>
<tr>
<td>>600</td>
<td>20-40 (9.1 to 18.1)</td>
<td>36 (914)</td>
</tr>
</tbody>
</table>
Figure 5. Recommended mounting (Applicable to all Hawk 2XL family models)
6.4.4.2 Vibration

a. Operating
 The drive as installed for normal operation, shall comply with the complete specified performance while subjected to continuous vibration not exceeding

 5-22 Hz @ 0.020 inches (0.51 mm) displacement
 22-400 Hz @ 0.5 g

 Vibration may be applied in the X, Y, or Z axis.

b. Non-operating
 The limits of non-operating vibration shall apply to all conditions of handling and transportation. This includes both isolated drives and integrated drives.
 The drive shall not incur physical damage or degraded performance as a result of continuous vibration not exceeding

 5-22 Hz @ 0.081 inches (2.05 mm) displacement
 22-400 Hz @ 2.00 g

 Vibration may be applied in the X, Y, or Z axis.

6.4.5 Air cleanliness

The drive is designed to operate in a typical office environment with minimal environmental control.

6.4.6 Electromagnetic susceptibility

See Section 2.1.2.
6.5 Mechanical specifications

The following nominal dimensions are exclusive of the decorative front panel accessory. However, dimensions of the front panel are shown in figure below. Refer to Figures 6a, 6b and 6c for detailed mounting configuration dimensions. See Section 8.4, “Drive mounting.”

- **Height:** 1.00 in
 25.4 mm
- **Width:** 4.00 in
 101.6 mm
- **Depth:** 5.74 in
 145.8 mm
- **Weight:** 1.5 pounds
 0.68 kilograms

![Mounting Configuration Diagram](image)

Notes:

1. Mounting holes three on each side, 6-32 UNC. Max screw length into side of drive 0.15 in. (3.81 mm). Screw tightening torque 6.0 in-lb (.675 NM) max with minimum thread engagement of 0.12 in. (3.05 mm).

2. Mounting holes four on bottom, 6-32 UNC. Max screw length into bottom of drive 0.20 in. (5.08 mm). Screw tightening torque 6.0 in-lb (.675 NM) max with minimum thread engagement of 0.12 in. (3.05 mm).

3. Power and interface connectors can extend past the “A” dimension by 0.040 in. (1.02 mm).

4. Decorative front panel (optional).

Dimension Table

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Inches</th>
<th>Millimeters</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5.74 ± .010</td>
<td>145.80 ± .25</td>
</tr>
<tr>
<td>B</td>
<td>4.00 ± .010</td>
<td>101.60 ± .25</td>
</tr>
<tr>
<td>C</td>
<td>1.00 ± .021</td>
<td>25.40 ± .53</td>
</tr>
<tr>
<td></td>
<td>− .009</td>
<td>− .22</td>
</tr>
<tr>
<td>D</td>
<td>2.362 ± .010</td>
<td>60.00 ± .25</td>
</tr>
<tr>
<td>E</td>
<td>.620 ± .020</td>
<td>15.75 ± .50</td>
</tr>
<tr>
<td>F</td>
<td>4.000 ± .010</td>
<td>101.60 ± .25</td>
</tr>
<tr>
<td>G</td>
<td>.250 ± .010</td>
<td>6.35 ± .25</td>
</tr>
<tr>
<td></td>
<td>− .005</td>
<td>− .12</td>
</tr>
<tr>
<td>H</td>
<td>1.750 ± .010</td>
<td>44.45 ± .25</td>
</tr>
<tr>
<td>J</td>
<td>3.750 ± .010</td>
<td>95.25 ± .25</td>
</tr>
<tr>
<td>K</td>
<td>2.370 ± .020</td>
<td>60.20 ± .50</td>
</tr>
<tr>
<td>L</td>
<td>1.00 ± .010</td>
<td>25.4 ± .25</td>
</tr>
<tr>
<td>M</td>
<td>4.000 ± .010</td>
<td>101.6 ± .25</td>
</tr>
<tr>
<td>N</td>
<td>0.19 ± .010</td>
<td>4.83 ± .25</td>
</tr>
<tr>
<td>P</td>
<td>0.015 max</td>
<td>0.381 max</td>
</tr>
<tr>
<td>R</td>
<td>0.181 ± .015</td>
<td>4.597 ± .38</td>
</tr>
<tr>
<td></td>
<td>− .010</td>
<td>− .25</td>
</tr>
</tbody>
</table>

Figure 6a. Mounting configuration dimensions for model “N”
Notes:

[1] Mounting holes three on each side, 6-32 UNC. Max screw length into side of drive 0.15 in. (3.81 mm). Screw tightening torque 6.0 in-lb (.675 NM) max with minimum thread engagement of 0.12 in. (3.05 mm).

[2] Mounting holes four on bottom, 6-32 UNC. Max screw length into bottom of drive 0.20 in. (5.08 mm). Screw tightening torque 6.0 in-lb (.675 NM) max with minimum thread engagement of 0.12 in. (3.05 mm).

[3] Power and interface connectors can extend past the "A" dimension by 0.040 in. (1.02 mm).

<table>
<thead>
<tr>
<th>Dimension Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inches</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>F</td>
</tr>
<tr>
<td>G</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>H</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>P</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Figure 6b. Mounting configuration dimensions for model “W”
Figure 6c. Mounting configuration dimensions for model “WC”
7.0 Defect and error management

The drive, as delivered, complies with this specification. The read error rate and specified storage capacity are not dependent upon use of defect management routines by the host (initiator).

Defect and error management in the SCSI system involves the drive internal defect/error management and SCSI systems error considerations (errors in communications between Initiator and the drive). Tools for use in designing a defect/error management plan are briefly outlined in this section, with references to other sections where further details are given.

7.1 Drive internal defects and errors

Identified defects are recorded on the drive defects list tracks (referred to as the primary or ETF defect list). These known defects are reallocated during the initial drive format operation at the factory. (See Section “Format Unit command in SCSI Interface Product Manual). Data correction by ECC will be applied to recover data from additional flaws if they occur.

Details of the SCSI commands supported by the drive are described in SCSI Product Interface Manual P/N 77738479.

7.2 SCSI systems errors

Information on the reporting of operational errors or faults across the interface is given in the SCSI Interface Product Manual. Message Protocol System is described in the SCSI Interface Product Manual P/N 77738479. Several of the messages are used in the SCSI systems error management system. The Request Sense command returns information to the host about numerous kinds of errors or faults. The Receive Diagnostic Results reports the results of diagnostic operations performed by the drive.

Status returned by the drive to the Initiator is described in the SCSI Interface Manual P/N 77738479. Status reporting plays a role in the SCSI systems error management and its use in that respect is described in sections where the various commands are discussed.
8.0 Installation

The first thing to do when installing a drive is to set the drive ID on the SCSI bus and set up (select) certain operating options. This is usually done by installing small shorting jumpers on the pins of connector J6 on the PCB (or J1-Auxiliary on the “W” and “WD” models), or via the drive to host I/O signals on “WC” and “DC” models. Some users connect cables to J6 or J1-Auxiliary and perform the set-up using remote switches.

For option jumper locations and definitions refer to Figures 7a, b, c and d. Drive default mode parameters are not normally needed for installation. Refer to Section 9.3.2 for default mode parameters if they are needed.

- Ensure that the SCSI ID of the drive is not the same as the host adapter. Most host adapters use SCSI ID 7.
- If multiple devices are on the bus set the drive SCSI ID to one that is not presently used by other devices on the bus.
- If the drive is the only device on the bus, attach it to the end of the SCSI bus cable. Permanently installed terminators must be enabled on the drive for “N” and “W” models using jumper plug TE. On model “WC” external terminators must be provided by the user, systems integrator or host equipment manufacturer.
- If the drive is attached to a bus that contains other devices, and the new drive is not attached to the end of the bus, the Terminator Enable jumper (TE) should be removed from the new drive.

Note. For additional information about terminator requirements, refer to Section 9.7. Terminator power is discussed in Section 9.8.

- Set all appropriate option jumpers for desired operation prior to power on. If jumpers are changed after power has been applied, recycle the drive power to make the new settings effective.
- Installation instructions are provided by host system documentation or with any additionally purchased drive installation software. If necessary see Section 10.0 for Seagate support services telephone numbers.
- The manufacturer’s installed labels must not be removed from the drive or covered with additional labels, as they contain information required when servicing the product.

Formatting

- It is not necessary to low level format this drive. The standard OEM drive is shipped from the factory low level formatted in 512 byte sectors. Other formats must be established only at time of drive manufacturer.
- High level format the drive. This involves assigning one or more partitions or logical drives to the drive volume. Follow the instructions in the system manuals for the system into which the drive is to be installed.

8.1 Drive ID/option select header

Figures 7a through 7c show views of the drive ID select jumper connectors. Figure 7d shows the option select jumper connector for all models. Figure 7b shows a rear view of model drives for the purpose of showing J1-Auxiliary which has a duplicate pin configuration and purpose of J6 (Figure 7a) on the rear of the drive. Both J1-Auxiliary and J6 have pins for selecting drive ID and for connecting the remote LED cable. Only one or the other should be used, although using both at the same time would not damage the drive. The notes following the figures describe the functions of the various jumper positions on the connectors J2, J1-Auxiliary and J6. Suggested part numbers for the jumpers used on J2 is Molex 52747-0211 (Seagate P/N 77679052). A bag with the two jumper plug types is shipped with the standard OEM drives.
Figure 7a. Hawk 2XL family drive ID select header for model “N”

[] Notes for Figures 7a through 7c are in Section 8.1.1.
Figure 7b. Hawk 2XL family drive ID select for models “W” and “WC”

<table>
<thead>
<tr>
<th>SCSI ID</th>
<th>Setting</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 0 0 0</td>
<td>(default)</td>
</tr>
<tr>
<td>1</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>A 1 A 0</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A 1 A 0</td>
<td></td>
</tr>
</tbody>
</table>

Shipped with cover installed. **Do not install jumpers; retain cover unless 20 pin plug is installed.**

<table>
<thead>
<tr>
<th>11</th>
<th>9</th>
<th>7</th>
<th>5</th>
<th>3</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Optional connections to switching circuits in host equipment to establish drive ID.

Dashed area is optional host circuitry (external to the drive) connected to host supplied optional usage plug. **Do not connect anything to pins 13-20.**
Figure 7c. Hawk 2XL family drive ID select header J1-auxiliary for model “W” (J1-Aux. Pins 1A-12A)
Caution:
Do not use J2 jumper plugs on J6 or J1-Auxiliary, as the internal contacts will be deformed and cannot be used on J2 without them falling off.

*Additional notes [] on these functions in section 8.1.2.

Figure 7d. Hawk 2XL family drive option select header for models “N” and “W”

Caution:
Do not use J2 jumper plugs on J6, as the internal contacts will be deformed and cannot be used on J2 without them falling off.

*Additional notes [] on these functions in section 8.1.2.

Figure 7e. Hawk 2XL family drive option select header for model “WC”
8.1.1 Notes for Figures 7a, 7b, 7c, 7d and 7e.

[1] Notes explaining the functions of the various jumpers on jumper header connectors J2, J1-Auxiliary and J6 are given here and in Section 8.1.2. The term "default" means as standard OEM units are configured with a jumper on those positions when shipped from factory. “Off” means no jumper is installed; “On” means a jumper is installed. OFF or ON underlined is factory default condition.

[2] The PCB on “N” and “WC” model drives does not have connector J1-Auxiliary. The J1-Auxiliary connector signals conform to SFF-8009 Revision 2.0, Unitized Connector for Cabled Drives, signal assignments for auxiliary connectors.

[4] Table 4 summarizes the configuration selection possibilities available on the different Hawk 2XL model drives

[5] These signals are also on 80 pin J1 (see Table 11c).

Table 4: Drive configuration selections summary

<table>
<thead>
<tr>
<th>ST32151/ST31051 Model</th>
<th>Function</th>
<th>Connector</th>
<th>Applicable Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>J1</td>
<td>J6</td>
</tr>
<tr>
<td>N</td>
<td>Drive ID</td>
<td>X, Y</td>
<td>none</td>
</tr>
<tr>
<td>N</td>
<td>Drive Activity LED</td>
<td>Y[3]</td>
<td>none</td>
</tr>
<tr>
<td>N</td>
<td>Option select</td>
<td>none</td>
<td>X</td>
</tr>
<tr>
<td>W</td>
<td>Drive ID</td>
<td>X, Y</td>
<td>X, Y[5]</td>
</tr>
<tr>
<td>W</td>
<td>Drive Activity LED</td>
<td>Y[3]</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Option select</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>WC</td>
<td>Option select:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delayed Mtr Start</td>
<td>Y[2]</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Enable Mtr Start</td>
<td>Y[2]</td>
<td>none</td>
</tr>
<tr>
<td></td>
<td>Write Protect</td>
<td>none</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Parity Disable</td>
<td>none</td>
<td>X</td>
</tr>
</tbody>
</table>

("X" means the function selection can be made with jumpers on that connector; “Y” means the signal is available to host through that connector.)

Note. [] for Table 4:

[1] Use either J6 or J1-Aux, but not both.

[2] I/O connector J1 plugs directly into host. No jumper can be installed on J1. The host supplies the logic state of these function signals; causing the selection of these functions. See pinout Table 11c.

[3] The host can drive a remotely located Drive Activity LED using signal.

[4] Use either J1 or J6, but not both.

[5] The drive reads the ID (asserted low) from J1-Auxiliary pins 1, 3, 5 and 7 for 250 ms after power-on or drive reset. Jumper plugs can be used on J1-Auxiliary pins 1-2, 3-4, 5-6 and 7-8 to set drive ID if desired, but usually a connector/cable is plugged to J1-Auxiliary to run these signals to the host for remote ID selection.

[6] The drive ID signals in the 80 pin J1 connector are asserted low by the host for 250 msec after power-on or drive reset.
8.1.2 Function description

Notes for Figures 7d and 7e

J2 Jumper Installation

Jumper Function Description

TE (Applies only to “N” and “W” models)

On With the jumper installed, the On-board (non-removable) terminator circuits are enabled (connected to the I/O lines). Default is jumper installed.

Off Terminator circuits not connected to I/O lines.

DS ME

Off Off Spindle starts immediately after power up - Default setting.

Off On Drive spindle does not start until Start Unit command received from host.

On Off Spindle Startup is delayed by SCSI ID times 12 seconds after power is applied, i.e., drive 0 spindle starts immediately when DC power connected, drive 1 starts after 12 second delay, drive 2 starts after 24 second delay, etc.

On On Drive spindle starts when Start Unit command received from host. Delayed start feature is overridden and does not apply when ME jumper is installed.

WP

On Entire drive is write protected.

Off Drive is not write protected. Default is no WP jumper installed.

PD

On Parity checking and parity error reporting by the drive is disabled.

Off Drive checks for parity and reports result of parity checking to host. Default is PD jumper not installed.

SS

Off Reserved jumper position. Default is no jumper installed.

TP TP (Does not apply to “WC” model)

Off Off No terminator power is connected to drive terminators or SCSI bus I/O cable [1].

On Off Drive supplies its own terminator power only. Jumper on this position is factory default.

Off On Drive supplies power to SCSI bus I/O cable [1]; none to internal terminators.

On On Drive supplies terminator power to itself (internal connection) and to SCSI bus I/O cable [1]. This is a legal jumper setting.

TP Position A (Does not apply to “WC” model)

On This horizontally positioned jumper across the two TP positions nearest PCB edge, connects terminator power from SCSI bus I/O cable [1] to the drive’s internal terminators (for single-ended I/O only).

Off See above explanations for TP

[1] See Tables 11a and 11b for pins used for Termpower
8.2 Drive orientation

The balanced rotary arm actuator design of the drive allows it to be mounted in any orientation. All drive performance characterization, however, has been done with the drive in horizontal (discs level) and vertical (drive on its side) orientations, and these are the two preferred mounting orientations.

8.3 Cooling

Cabinet cooling must be designed by the customer so that the ambient temperature immediately surrounding the drive will not exceed temperature conditions specified in Section 6.4.1, “Temperature.” Specific consideration should be given to make sure adequate air circulation is present around the printed circuit board (PCB) to meet the requirements of Section 6.4.1, “Temperature.”

8.3.1 Air flow

The rack, cabinet, or drawer environment for the Hawk 2XL drive must provide cooling of the electronics and head and disc assembly (HDA). You should confirm that adequate cooling is provided using the temperature measurement guidelines described below.

The drive should be oriented, or air flow directed, so that the least amount of air flow resistance is created while providing air flow to the electronics and HDA. Also, the shortest possible path between the air inlet and exit should be chosen to minimize the travel length of air heated by the drive and other heat sources within the rack, cabinet, or drawer environment.

Possible air-flow patterns are shown in Figure 8. The air-flow patterns are created by one or more fans, either forcing or drawing air as shown in the illustrations. Other air-flow patterns are acceptable as long as the temperature measurement guidelines of Section 6.4.1 are met.

8.4 Drive mounting

When mounting the drive using the bottom holes (x-y plane in Figure 5) care must be taken to ensure that the drive is not physically distorted due to a stiff non-flat mounting surface. The allowable mounting surface stiffness is 80 lb/in (14.0 N/mm). The following equation and paragraph define the allowable mounting surface stiffness:

\[k \times x = 80 \text{ lb (14.0 N)} \]

where ‘k’ represents the mounting surface stiffness (units of lb/in or N/mm), and, ‘x’ represents the out-of-plane mounting surface distortion (units of inches or millimeters). The out-of-plane distortion (‘x’) is determined by defining a plane with three of the four mounting points fixed and evaluating the out-of-plane deflection of the fourth mounting point when a known force is applied to the fourth point.

8.5 Grounding

Signal ground (PCB) and HDA ground are connected together in the drive and cannot be separated by the user. The equipment in which the drive is mounted is connected directly to the HDA and PCB with no electrically isolating shock mounts. If it is desired for the system chassis to not be connected to the HDA/PCB ground, the systems integrator or user must provide a nonconductive (electrically isolating) method of mounting the drive in the host equipment.
Figure 8. Air flow (suggested)

Note. Air flows in the direction shown (front to back) or in reverse direction (back to front)

Note. Air flows in the direction shown or in reverse direction (side to side)
9.0 Interface requirements

9.1 General description
This section partially describes the interface requirements as implemented on the drives. The major portion of the interface requirements/implementation is described in the Seagate SCSI Interface Product Manual, P/N 77738479. This section has tables that give the Hawk 2XL Family drive's version of the SCSI implementation described in the SCSI Interface Product Manual.

9.2 SCSI interface messages supported
Table 5 lists the messages supported by the SCSI-2 and SCSI-3 modes of the Hawk 2XL family drives.

Table 5: SCSI messages supported by Hawk 2XL family drives

<table>
<thead>
<tr>
<th>Message Code</th>
<th>Supported by: SCSI-2/3</th>
<th>Message Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>01h[1]</td>
<td>Y</td>
<td>Extended messages</td>
</tr>
<tr>
<td>06h</td>
<td>Y</td>
<td>Abort</td>
</tr>
<tr>
<td>0DH</td>
<td>Y</td>
<td>Abort-tag</td>
</tr>
<tr>
<td>0CH</td>
<td>Y</td>
<td>Bus device reset</td>
</tr>
<tr>
<td>0EH</td>
<td>Y</td>
<td>Clear queue</td>
</tr>
<tr>
<td>00h</td>
<td>Y</td>
<td>Command complete</td>
</tr>
<tr>
<td>12h</td>
<td>Y</td>
<td>Continue I/O process</td>
</tr>
<tr>
<td>04h</td>
<td>Y</td>
<td>Disconnect</td>
</tr>
<tr>
<td>80h-FFh</td>
<td>Y</td>
<td>Identify</td>
</tr>
<tr>
<td>23h</td>
<td>Y</td>
<td>Ignore wide residue (two bytes) (W & WC models only)</td>
</tr>
<tr>
<td>0Fh</td>
<td>N</td>
<td>Initiate recovery</td>
</tr>
<tr>
<td>05h</td>
<td>Y</td>
<td>Initiator detected error</td>
</tr>
<tr>
<td>0Ah</td>
<td>N</td>
<td>Linked command complete [2]</td>
</tr>
<tr>
<td>0Bh</td>
<td>N</td>
<td>Linked command complete with flag [2]</td>
</tr>
<tr>
<td>09h</td>
<td>Y</td>
<td>Message parity error</td>
</tr>
<tr>
<td>07h</td>
<td>Y</td>
<td>Message reject</td>
</tr>
<tr>
<td>[1]</td>
<td>N</td>
<td>Modify data pointer</td>
</tr>
<tr>
<td>08h</td>
<td>Y</td>
<td>No operation</td>
</tr>
<tr>
<td></td>
<td>Queue tag messages (two bytes)</td>
<td></td>
</tr>
<tr>
<td>21h</td>
<td>Y</td>
<td>Head of queue tag</td>
</tr>
<tr>
<td>22h</td>
<td>Y</td>
<td>Ordered queue tag</td>
</tr>
<tr>
<td>20h</td>
<td>Y</td>
<td>Simple queue tag</td>
</tr>
<tr>
<td>10h</td>
<td>N</td>
<td>Release recovery</td>
</tr>
<tr>
<td>03h</td>
<td>Y</td>
<td>Restore pointers</td>
</tr>
<tr>
<td>02h</td>
<td>Y</td>
<td>Save data pointer</td>
</tr>
<tr>
<td>13h</td>
<td>Y</td>
<td>Target transfer disable</td>
</tr>
<tr>
<td>11h</td>
<td>N</td>
<td>Terminate I/O process</td>
</tr>
<tr>
<td>[1]</td>
<td>[3]</td>
<td>Wide data transfer request</td>
</tr>
</tbody>
</table>

Notes.
“W” and “WC” models do support.
9.3 SCSI interface commands supported

Table 6 lists the SCSI interface commands that are supported in the SCSI-2 and SCSI-3 modes of the drive. OEM standard drives are shipped set to operate in SCSI-2/SCSI-3 mode.

Table 6: Commands supported by Hawk 2XL family drive

<table>
<thead>
<tr>
<th>Command Code</th>
<th>Supported by: SCSI-2/3</th>
<th>Command Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>00h</td>
<td>Y</td>
<td>Test unit ready</td>
</tr>
<tr>
<td>01h</td>
<td>Y</td>
<td>Rezero unit</td>
</tr>
<tr>
<td>03h</td>
<td>Y</td>
<td>Request sense</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Extended sense</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Field pointer bytes</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Actual retry count bytes</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Deferred error supported</td>
</tr>
<tr>
<td>04h</td>
<td>Y</td>
<td>Format unit [1]</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Block format</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Bytes from index format</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Physical sector format</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>DPRY bit supported</td>
</tr>
<tr>
<td>07h</td>
<td>Y</td>
<td>Reassign blocks</td>
</tr>
<tr>
<td>08h</td>
<td>Y</td>
<td>Read</td>
</tr>
<tr>
<td>0Ah</td>
<td>Y</td>
<td>Write</td>
</tr>
<tr>
<td>0Bh</td>
<td>Y</td>
<td>Seek</td>
</tr>
<tr>
<td>12h</td>
<td>Y</td>
<td>Inquiry</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Vital product data page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Unit serial number page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Implemented operating definition page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Firmware numbers page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Date code page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Jumper settings page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Device Behavior page</td>
</tr>
<tr>
<td>15h</td>
<td>Y [2] [3]</td>
<td>Mode select (same pages as mode Sense command, see below)</td>
</tr>
<tr>
<td>16h</td>
<td>Y</td>
<td>Reserve</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>3rd party reserve</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Extent reservation</td>
</tr>
<tr>
<td>17h</td>
<td>Y</td>
<td>Release</td>
</tr>
<tr>
<td>18h</td>
<td>N</td>
<td>Copy</td>
</tr>
<tr>
<td>1Ah</td>
<td>Y [2] [3]</td>
<td>Mode sense</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Boot page (00h)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Error recovery page (01h)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Disconnect/reconnect (02h) (DTDC, DIMM not used)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Format page (03h)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Rigid disc drive geometry page (04)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Verify error recovery page (07h)</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Caching parameters page (08h)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>IC bit controllable</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Control mode page (0Ah)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Notch and Partition Page (0C)</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>Power condition page (1A)</td>
</tr>
<tr>
<td>1Bh</td>
<td>Y</td>
<td>Start unit/stop unit (spindle ceases rotating)</td>
</tr>
</tbody>
</table>
Table 6: Commands supported by Hawk 2XL family drive (continued)

<table>
<thead>
<tr>
<th>Command Code</th>
<th>Supported by:</th>
<th>Command Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Ch</td>
<td>Y</td>
<td>Receive diagnostic results</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Supported diagnostics pages</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Translate page</td>
</tr>
<tr>
<td>1Dh</td>
<td>Y</td>
<td>Send diagnostics page</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Supported diagnostics pages</td>
</tr>
<tr>
<td></td>
<td>Y</td>
<td>Translate page</td>
</tr>
<tr>
<td>25h</td>
<td>Y</td>
<td>Read capacity</td>
</tr>
<tr>
<td>28h</td>
<td>Y</td>
<td>Read extended</td>
</tr>
<tr>
<td>2Ah</td>
<td>Y</td>
<td>Write extended</td>
</tr>
<tr>
<td>2Bh</td>
<td>Y</td>
<td>Seek extended</td>
</tr>
<tr>
<td>2Eh</td>
<td>Y</td>
<td>Write and verify</td>
</tr>
<tr>
<td>2Fh</td>
<td>Y</td>
<td>Verify</td>
</tr>
<tr>
<td>30h</td>
<td>N</td>
<td>Search data high</td>
</tr>
<tr>
<td>31h</td>
<td>N</td>
<td>Search data equal</td>
</tr>
<tr>
<td>32h</td>
<td>N</td>
<td>Search data low</td>
</tr>
<tr>
<td>33h</td>
<td>N</td>
<td>Set limits</td>
</tr>
<tr>
<td>34h</td>
<td>N</td>
<td>Prefetch</td>
</tr>
<tr>
<td>35h</td>
<td>Y</td>
<td>Synchronize cache</td>
</tr>
<tr>
<td>36h</td>
<td>N</td>
<td>Lock-unlock cache</td>
</tr>
<tr>
<td>37h</td>
<td>Y</td>
<td>Read defect data</td>
</tr>
<tr>
<td>39h</td>
<td>N</td>
<td>Compare</td>
</tr>
<tr>
<td>3Ah</td>
<td>N</td>
<td>Copy and verify</td>
</tr>
<tr>
<td>3Bh</td>
<td>Y</td>
<td>Write buffer (modes 6 & 7 not supported)</td>
</tr>
<tr>
<td>3Ch</td>
<td>Y</td>
<td>Read buffer</td>
</tr>
<tr>
<td>3Eh</td>
<td>Y</td>
<td>Read long</td>
</tr>
<tr>
<td>3Fh</td>
<td>Y</td>
<td>Write long</td>
</tr>
<tr>
<td>40h</td>
<td>N</td>
<td>Change definition</td>
</tr>
<tr>
<td>41h</td>
<td>N</td>
<td>Write same</td>
</tr>
<tr>
<td>42-4Bh</td>
<td>N</td>
<td>Not used</td>
</tr>
<tr>
<td>4Ch</td>
<td>Y</td>
<td>Log select</td>
</tr>
<tr>
<td>4Dh</td>
<td>Y</td>
<td>Log sense</td>
</tr>
<tr>
<td>4E-54h</td>
<td>N</td>
<td>Not used</td>
</tr>
<tr>
<td>55h</td>
<td>Y</td>
<td>Mode select (10)</td>
</tr>
<tr>
<td>56h</td>
<td>Y</td>
<td>Reserve (10)</td>
</tr>
<tr>
<td>57h</td>
<td>Y</td>
<td>Release (10)</td>
</tr>
<tr>
<td>58-59h</td>
<td>N</td>
<td>Not used</td>
</tr>
<tr>
<td>5Ah</td>
<td>Y</td>
<td>Mode sense (10)</td>
</tr>
<tr>
<td>5B-5Fh</td>
<td>N</td>
<td>Not used</td>
</tr>
<tr>
<td>60-BFh</td>
<td>N</td>
<td>Not used</td>
</tr>
<tr>
<td>C0-DFh</td>
<td>N</td>
<td>Not used</td>
</tr>
<tr>
<td>E0-FFhN</td>
<td>N</td>
<td>Not used</td>
</tr>
</tbody>
</table>

[1] The drive can format to any even number of bytes per sector from 180 to 4096 (established at factory only)
[2] Supports both 6 byte and 10 byte versions
[3] Table 8a and 8b show how individual bits are set and which are changeable by the host.
9.3.1 Inquiry data

Table 7 following lists the Standard Inquiry command data that the drive should return to the initiator per the format given in the SCSI-2 Interface Product Manual P/N 77738479, section 5.1.1.3.

Table 7: Hawk 2XL family drive Standard Inquiry data

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Data (HEX)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>00 00 02 02 8F 00 00 [16]^1 53 45 41 47 41 54 45 20</td>
</tr>
<tr>
<td>32-47</td>
<td>R# R# R# R# S# S# S# S# S# S# S# S# 00 00 00 00</td>
</tr>
<tr>
<td>48-63</td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>64-79</td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>80-95</td>
<td>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>96-111</td>
<td>00 43 6F 70 79 72 69 67 68 74 20 28 63 29 20</td>
</tr>
<tr>
<td>112-127</td>
<td>[39] [39] [35]^3 20 53 65 61 67 61 74 65 65 20 6C 6C 20</td>
</tr>
<tr>
<td>128-143</td>
<td>72 69 67 68 74 73 20 72 65 73 65 72 76 65 64 20</td>
</tr>
</tbody>
</table>

Notes.

[^1] For “W” and “WC” models this value is 36.

R# Four ASCII digits representing the last four digits of the product Firmware Release number. This information is also given in the Vital Product data page C0h, together with servo RAM and ROM release numbers.

S# Eight ASCII digits representing the eight digits of the product serial number.

[^2] Bytes 18 through 24 will reflect model of drive. Shown here are hex values for Model ST32151N. Values for ST31051N are 33 31 30 35 31 4E.

For models “W” and “WC” byte 23 is 57 (W) instead of 4E, since these are the both wide data bus drives. The host does not care about the “C” in “WC”.

[^3] Copyright Year - changes with actual year.

9.3.1.1 Inquiry Vital Product data

Instead of the Standard Inquiry data shown in Table 7, the initiator can request several Vital Product Data pages by setting the Inquiry command EVPD bit to one. The SCSI, Version 2 Interface Product Manual P/N 77738479, section 5.1.1.3.1 lists the Vital Product Data pages supported and describes their formats. A separate Inquiry command must be sent to the drive for each Vital Product Data page the initiator wants the drive to send back.
9.3.2 Mode Sense data

The Mode Sense command provides a means for the drive to report its operating parameters to the initiator. The drive maintains four sets of Mode parameters, Default values, Saved values, Current values and Changeable values.

Default values are hard coded in the drive firmware that is stored in flash EPROM nonvolatile memory on the drive PCB. Default values can be changed only by downloading a complete set of new firmware into the flash EPROM. An initiator can request and receive from the drive a list of Default values and use those in a Mode Select command to set up new Current and Saved values, where the values are changeable.

Saved values are stored on the disk media using a Mode Select command. Only parameter values that are allowed to be changed can be changed by this method. See “Changeable values” defined below. Parameters in the Saved values list that are not changeable by the Mode Select command get their values from the Default values storage.

Current values are volatile values currently being used by the drive to control its operation. A Mode Select command can be used to change these values (only those that are changeable). Originally, they are installed from Saved or Default values after a power on reset, hard reset, or Bus Device Reset message.

Changeable values form a bit mask, stored in nonvolatile memory, that dictates which of the Current values and Saved values can be changed by a Mode Select command. A “one” allows a change to a corresponding bit; a “zero” allows no change. For example, in Table 8a refer to Mode page 01, in the first row entitled “CHG”. These are hex numbers representing the changeable values for Mode page 01. Note in columns 1 and 2 (bytes 00 and 01), there is 00h, which indicates that in bytes 00 and 01 none of the bits are changeable. Note also that bytes 04, 05, 06 and 07 are not changeable, because those fields are all zeros. In bytes 02, hex value EF equates to the binary pattern 1110 1111. If there were a zero in any bit position in the field, it means that bit is not changeable. Bits 7, 6, 5, 3, 2, 1 and 0 are changeable, because those bits are all ones. Bit 4 is not changeable. In this particular example, it indicates 7 of 8 error recovery control bits are all changeable. FF in column 4 indicates all bits in byte 3 are changeable.

The Changeable values list can only be changed by downloading new firmware into the flash EPROM.

On drives requiring unique Saved values, the required unique Saved values are stored into the Saved values storage location on the media prior to shipping the drive. Some drives may have unique firmware with unique Default values also.

On standard OEM drives the Saved values are taken from the Default values list and stored into the Saved values storage location on the media prior to shipping.

When a drive is powered up, it takes Saved values from the media and stores them to the Current values storage in volatile memory. It is not possible to change the Current values (or the saved values) with a Mode Select command before the drive is up to speed and is “ready.” An attempt to do so results in a “Check Condition” status being returned.

Note.

Because there may be several different versions of drive control firmware in the total population of drives in the field, the Mode Sense values given in the following tables may not exactly match those of some drives.
The following tables list the values of the data bytes returned by the drive in response to the Mode Sense command pages for SCSI-2/SCSI-3 implementation (see SCSI Interface Product Manual, P/N 77738479).

Definitions:

DEF = Default value. Standard drives are shipped configured this way.

CHG = Changeable bits; indicates if current and saved values are changeable.

Table 8a: Mode sense data, ST32151/ST32155 default values (SCSI-2/3 implementation)

<table>
<thead>
<tr>
<th>Bytes</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td>87</td>
<td>00</td>
<td>10</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>Sense</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>02</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

Mode Page Headers and Parameter Data Bytes

01 DEF
81 0A 00 0D 30 00 00 00 00 00 FF FF
01 CHG
00 00 EF FF 00 00 00 FF 00 00

02 DEF
82 0E 80 80 00 0A 00 00 00 00 00 00 00 00 00 87 00 00 00
02 CHG
00 00 FF FF 00 00 00 00 00 00 00 00 00 87 00 00 00

03 DEF
83 16 00 08 00 0A 00 00 00 10 00 7E 02 00 00 01 00 0C 00 00 40 00 00 00
03 CHG
00 00 FF FF FF FF 00 00 FF FF 00 00 00 00 00 00 00 00 00 00 00 00

04 DEF
84 16 00 10 51 08 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
04 CHG
00 00

07 DEF
87 0A 00 0D 30 00 00 00 00 00 FF FF
07 CHG
00 00 0F FF 00 00 00 00 00 00 00 00

08 DEF
88 12 14 00 FF FF 00 00 FF FF FF FF FF 80 03 00 00 00 00 00 00
08 CHG
00 00 BD 00 FF FF FF FF FF FF FF FF 00 00 A0[1] FF 00 00 00 00 00 00

0A DEF
8A 0A 02 00
0A CHG
00 00 01 F1 00 00 00 00 00 00 00 00

1A DEF
9A 0A 00
1A CHG
00 00

00 DEF
80 02 00
00 CHG
00 00 77 00

[1] Though byte 12, bit 7 (A0) is shown as changeable, the FSW function governed by that bit is not implemented by this drive.
Table 8b: Mode sense data, ST31051/ST31055 default values (SCSI-2/3 implementation)

<table>
<thead>
<tr>
<th>Bytes</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode Sense Data</td>
<td>87</td>
<td>00</td>
<td>10</td>
<td>08</td>
<td></td>
</tr>
<tr>
<td>Mode Page</td>
<td>←-----------------------------Mode Page Headers and Parameter Data Bytes-----------------------------→</td>
<td></td>
</tr>
<tr>
<td>01 DEF</td>
<td>81</td>
<td>0A</td>
<td>00</td>
<td>0D</td>
<td>30</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>05</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td></td>
</tr>
<tr>
<td>01 CHG</td>
<td>00</td>
<td>00</td>
<td>EF</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>02 DEF</td>
<td>82</td>
<td>0E</td>
<td>80</td>
<td>80</td>
<td>00</td>
<td>0A</td>
<td>00</td>
</tr>
<tr>
<td>02 CHG</td>
<td>00</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>87</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 DEF</td>
<td>83</td>
<td>16</td>
<td>00</td>
<td>04</td>
<td>00</td>
<td>04</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>08</td>
<td>00</td>
<td>TBD</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>00</td>
<td>0C</td>
<td>00</td>
<td>00</td>
<td>40</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>03 CHG</td>
<td>00</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td>00</td>
</tr>
<tr>
<td>04 DEF</td>
<td>84</td>
<td>16</td>
<td>00</td>
<td>10</td>
<td>51</td>
<td>04</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>04 CHG</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 DEF</td>
<td>87</td>
<td>0A</td>
<td>00</td>
<td>0D</td>
<td>30</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td></td>
</tr>
<tr>
<td>07 CHG</td>
<td>00</td>
<td>00</td>
<td>0F</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>08 DEF</td>
<td>88</td>
<td>12</td>
<td>14</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>80</td>
<td>03</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>08 CHG</td>
<td>00</td>
<td>00</td>
<td>BD</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>A0[1]</td>
<td>FF</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0A DEF</td>
<td>8A</td>
<td>0A</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>0A CHG</td>
<td>00</td>
<td>00</td>
<td>01</td>
<td>F1</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1A DEF</td>
<td>9A</td>
<td>0A</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>1A CHG</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>00 DEF</td>
<td>80</td>
<td>02</td>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>00 CHG</td>
<td>00</td>
<td>00</td>
<td>77</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

[1] Though byte 12, bit 7 (A0) is shown as changeable, the FSW function governed by that bit is not implemented by this drive.
9.4 **SCSI bus conditions and miscellaneous features supported**

Asynchronous SCSI bus conditions supported by the drive are listed below. These conditions cause the SCSI device to perform certain actions and can alter the SCSI bus phase sequence. Other miscellaneous operating features supported are also listed here. Refer to SCSI I/O Product manual P/N 77738479 for details.

Table 9: SCSI bus conditions and other misc. features

Condition/Feature Supported by:

<table>
<thead>
<tr>
<th>SCSI-2/SCSI-3</th>
<th>Conditions or Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Attention Condition</td>
</tr>
<tr>
<td>Y</td>
<td>Reset Condition</td>
</tr>
<tr>
<td>Y</td>
<td>Contingent Allegiance Condition</td>
</tr>
<tr>
<td>N</td>
<td>Asynchronous Event Notification</td>
</tr>
<tr>
<td>Y</td>
<td>Arbitrating System</td>
</tr>
<tr>
<td>Y</td>
<td>Disconnect/Reconnect</td>
</tr>
<tr>
<td>Y</td>
<td>Asynchronous Data Transfer</td>
</tr>
<tr>
<td>Y</td>
<td>Synchronous Data Transfer</td>
</tr>
<tr>
<td>N</td>
<td>Synchronized (locked) Spindle Operation</td>
</tr>
<tr>
<td>N</td>
<td>Differential Interface Circuits available</td>
</tr>
<tr>
<td>Y</td>
<td>Segmented Caching</td>
</tr>
<tr>
<td>N</td>
<td>Zero Latency Read</td>
</tr>
<tr>
<td>Y</td>
<td>Queue tagging (up to 64 Que tags supported)</td>
</tr>
<tr>
<td>Y</td>
<td>Deferred Error Handling</td>
</tr>
<tr>
<td>Y</td>
<td>Parameter Rounding</td>
</tr>
<tr>
<td>Y</td>
<td>Reporting actual retry count in Extended Sense bytes 15, 16 and 17.</td>
</tr>
<tr>
<td>N</td>
<td>Adaptive Caching</td>
</tr>
<tr>
<td>Y</td>
<td>Adaptive Read Look-ahead</td>
</tr>
<tr>
<td>[1]</td>
<td>Flag and Link bits in Control Byte supported</td>
</tr>
<tr>
<td>Y</td>
<td>Immediate status on Start/Stop command</td>
</tr>
<tr>
<td>Y</td>
<td>Immediate status on Format unit command</td>
</tr>
<tr>
<td>N</td>
<td>Immediate status on Synchronize Cache command</td>
</tr>
<tr>
<td>Y</td>
<td>Format progress indication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SCSI-2/SCSI-3</th>
<th>Status Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>Good</td>
</tr>
<tr>
<td>Y</td>
<td>Check Condition</td>
</tr>
<tr>
<td>N</td>
<td>Condition Met/Good</td>
</tr>
<tr>
<td>Y</td>
<td>Busy</td>
</tr>
<tr>
<td>[1]</td>
<td>Intermediate/Good</td>
</tr>
<tr>
<td>N</td>
<td>Intermediate/Condition Met/Good</td>
</tr>
<tr>
<td>Y</td>
<td>Reservation Conflict</td>
</tr>
<tr>
<td>Y</td>
<td>Queue Full</td>
</tr>
</tbody>
</table>

Notes.

[1] Customer unique
9.5 Synchronous data transfer

9.5.1 Synchronous data transfer periods supported

Table 10 lists Synchronous Data transfer periods supported by the drive. The data transfer period to be used by the drive and the initiator is established by an exchange of messages during the Message Phase of operation. See the section on message protocol in the SCSI Interface Manual P/N 77738479.

Table 10: Synchronous data transfer periods for drive

<table>
<thead>
<tr>
<th>M (Decimal)</th>
<th>Transfer period (M times 4 nanoseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 [1]</td>
<td>62.5 [1]</td>
</tr>
<tr>
<td>18 [1]</td>
<td>75 [1]</td>
</tr>
<tr>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>31</td>
<td>125</td>
</tr>
<tr>
<td>37</td>
<td>150</td>
</tr>
<tr>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>62</td>
<td>250</td>
</tr>
<tr>
<td>75</td>
<td>300</td>
</tr>
<tr>
<td>87</td>
<td>350</td>
</tr>
<tr>
<td>100</td>
<td>400</td>
</tr>
</tbody>
</table>

9.5.2 REQ/ACK offset

The maximum value supported by the Hawk 2XL family drives for REQ/ACK offset is 15 (0Fh).

9.6 Physical interface

Figures 9a, 9b and 9c show the locations of the drive physical interface components. Shown are the locations of the DC power connector, the SCSI interface connector, and the drive select and option select headers.

Details of the physical, electrical and logical characteristics are given in sections following, while the SCSI operational aspects of Seagate drive interfaces are given in the Seagate SCSI Interface Product Manual, P/N 77738479.

This section describes the connectors, cables, signals, terminators and bus timing of the DC and SCSI I/O Interface. See Sections 9.7 and 9.8 for additional terminator information.

9.6.1 DC cable and connector

With the exception of “WC” model drives, the drive receives DC power through a 4 pin connector (see Figure 9a for pin assignment) mounted at the rear of the main PCB. Recommended part numbers of the mating DC power connector are listed below, but equivalent parts may be used.

<table>
<thead>
<tr>
<th>Type of Cable</th>
<th>Connector</th>
<th>Contacts (20-14 AWG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 AWG</td>
<td>MP 1-480424-0</td>
<td>AMP 60619-4 (Loose Piece)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMP 61117-4 (Strip)</td>
</tr>
</tbody>
</table>

Model “WC” receives power through the 80 pin I/O connector. See Table 11c.

[1] ULTRA SCSI transfer periods. Applies only to models ST32155/ST31055.
Figure 9a. Physical interface for “N” model drives
Figure 9b. Model “W” drive physical interface (68 pin J1 SCSI I/O connector)

Note: See Table 11c for DC power pin assignments.

Figure 9c. Model “WC” drive physical interface (80 pin J1 SCSI I/O connector / DC power connector)
9.6.2 SCSI Interface physical description

The drives may be daisy chained together or with other compatible SCSI devices. Both ends of the cable must be terminated. The “N”, “W” and “WC” model drives implement single-ended drivers and receivers. All signals are common between all SCSI devices. The drive may be daisy chained only with SCSI devices having the same type drivers and receivers. Devices having single-ended interface circuits cannot be on the same daisy-chain with devices having differential interface circuit. A maximum of 8 (“N” models) or 16 (“W” and “WC”) SCSI devices (including the Host) may be daisy chained together. The SCSI devices at both ends of the daisy-chain are to be terminated. Intermediate SCSI devices shall not be terminated (see Figure 10). Remove the terminator enable jumper TE on J2 select header (“N” and “W” models), or the external terminators (“WC” model), not the terminator power source selector jumper TP (Figure 7d).

“WC” model drives plug into PCB or bulkhead connectors in the Host. They may be connected in a daisy-chain by the host backplane wiring or PCB circuit runs that have adequate DC current carrying capacity to support the number of drives plugged into the PCB or bulkhead connectors. A single 80 pin I/O connector cannot support the DC current needs of several drives, so no daisy chain cables beyond the bulkhead connectors should be used. A single drive connected via a cable to a host 80 pin I/O connector is not recommended.

9.6.3 SCSI Interface Cable requirements

In general, cables having the characteristic impedances given in Section 9.6.3.1 are not available; however, impedances that are somewhat lower are satisfactory. A characteristic impedance of 100 ohm ±10% is recommended for unshielded flat cable or twisted pair ribbon cable. However, most available cables have a somewhat lower characteristic impedance. To minimize discontinuances and signal reflections, cables of different impedances should not be used in the same bus. Implementations may require trade-offs in shielding effectiveness, cable length, the number of loads, transfer rates, and cost to achieve satisfactory system operation. If shielded and unshielded cables are mixed within the same SCSI bus, the effect of impedance mismatch must be carefully considered. Proper impedance matching is especially important in order to maintain adequate margin at FAST SCSI transfer rates.

Model “N” uses nonshielded cable connectors. A 50 conductor flat cable or 25 twisted pair cable shall be used. A minimum conductor size of 28 AWG should be used to minimize noise effects.

Suggested nonshielded flat cable part numbers are:
Flat cable - 35M-3365-50 Twisted pair - Spectra Twist in flat 455-248-50

Model “W” uses nonshielded cable connectors. A 68 conductor flat cable or 34 twisted pair cable shall be used with connectors listed in 9.6.4. A minimum conductor size of 28 AWG should be used to minimize noise effects.

Suggested nonshielded flat cable part numbers are:
Flat cable - 35M-3365-68 Twisted pair - Spectra Twist in flat 455-248-68

For WC models:

The 80 pin connector option is intended for use on drives that plug directly into a PCB or wall/bracket mounted connector in the host equipment. Installations with connectors on cables are not recommended.

9.6.3.1 Single-ended I/O circuits (“N”, “W” and “WC” models)

The maximum total cable length for use with drives having single-ended I/O driver and receiver circuits shall be 6 metres (19.7 ft.) when operating at line data transfer rates of 5 Mbytes/sec or less, and 3 metres (9.85 ft.) when operating at transfer rates greater than 5 Mbytes/sec (FAST SCSI). A stub length of no more than 0.1 metre (0.33 ft.) is allowed off the mainline interconnection with any connected equipment. An ideal impedance match with cable terminators implies a cable characteristic impedance of 132 ohms. Single-ended I/O cable pin assignments are shown in Table 11a, 11b and 11c.

9.6.3.2 Differential I/O circuits (“ND”, “WD” and “DC” models)

The Hawk 2XL has no differential I/O models available.
9.6.4 Mating connectors

Part numbers for the different type connectors that mate with the various Hawk 2XL I/O connectors are given in the sections following.

9.6.4.1 Mating connectors for “N” models

The nonshielded cable connector shall be a 50 conductor connector consisting of two rows of 25 male contacts with adjacent contacts 100 mils apart.

Recommended mating flat cable connector part numbers are:

- **Closed end**: 3M-3425-7000 W/O Strain Relief, No Center Key
- **(for cable ends)**: 3M-3425-7050 With Strain Relief, No Center Key
- **Open end**: 3M-3425-6000 W/O Strain Relief, No Center Key
- **(In daisy-chain)**: 3M-3425-6050 With Strain Relief, No Center Key
- **Dupont-66900-290** With Strain Relief, With Center Key
- **Dupont-66900-250** With Strain Relief, With Center Key

[1] See Figure 10

The drive device connector is a nonshielded 50 conductor connector consisting of two rows of 25 female pins with adjacent pins 100 mils apart. The connector is keyed (see Figure 11a).

9.6.4.2 Mating connectors for W models

The nonshielded cable connector shall be a 68 conductor connector consisting of two rows of 34 male contacts with adjacent contacts 0.050 inch (1.27 mm) apart.

Recommended mating flat cable connector part numbers are:

- **Closed end**: Amp Model 749925-5 (50 mil conductor centers, 28 or 30 AWG wire)
- **(for cable ends)**: Use two, 34 conductor, 50 mil center flat cable with this connector. This type connector can only be used on cable ends.
- **Open end**: Amplitite 88-5870-294-5 W/O Strain Relief, (25 mil conductor centers, 30 AWG for daisy-chain installations.

[1] See Figure 10.

The drive device connector is a nonshielded 68 conductor connector consisting of two rows of 34 female pins with adjacent pins 50 mils apart. The connector is keyed by means of its shape (see Figure 11b).

9.6.4.3 Mating connectors for WC models

The nonshielded connector shall be an 80 conductor connector consisting of two rows of 40 contacts with adjacent contacts 50 (1.27 mm) mils apart. I/O connection using a cable is not recommended. The length and size of the host equipment DC power carrying conductors from the DC power source to the host equipment 80 pin disk drive interface connector(s) should be strictly designed according to proper power transmission design concepts. No possibility for the equipment user to attach an 80 pin cable/connector should be allowed, since the length of the DC power carrying conductors could not be controlled and therefore could become too long for safe power transmission to the drive. Daisy-chain 80 conductor cables should especially not be allowed, since the power-carrying conductors on the 80 conductor interface were not intended to support a series of drives.

Recommended PCB or bulkhead mounted connectors are:

<table>
<thead>
<tr>
<th>Straight-in connector</th>
<th>Hot Plug version</th>
<th>Right angle to PCB connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seagate P/N: 77678703</td>
<td>787311-1</td>
<td>Seagate P/N: 77678559</td>
</tr>
<tr>
<td>Amp US P/N: 2-557103-1</td>
<td>787311-1</td>
<td>Amp US P/N: 2-557101-1</td>
</tr>
<tr>
<td>Amp Japan P/N: 5-175475-9</td>
<td></td>
<td>Amp Japan P/N: 5-175474-9</td>
</tr>
</tbody>
</table>
[1] Closed end type 50 pin connector used. Install terminator enable (TE) jumper plug.
[3] Host need not be on the end of the daisy-chain. Another device can be on the end with the terminator, the host having no terminator.
[4] Total interface cable length must not exceed that specified in Section 9.6.3.1 (including host adapter/initiator).
[5] SCSI ID7 has highest arbitration priority, ID0 has lowest for “N” models. For “W” models, priority is ID 7 to ID 0, then ID 15 to ID 8. (ID8 very lowest).
[7] Open end type 68 pin connector used. Terminators disabled. If end device, closed end type 68 pin connector used. Install terminator enable (TE) jumper plug.

Figure 10. SCSI Daisy-chain interface cabling
Figure 11a. Nonshielded 50 pin SCSI device connector
Figure 11b. Nonshielded 68 pin SCSI device connector
Figure 11c. Nonshielded 80 pin SCSI connector, used on “WC” model
Table 11a: Model “N”, single ended I/O, 50 conductor, signal/contact assignments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
<td>1</td>
<td>26</td>
<td>TERMPOWER</td>
</tr>
<tr>
<td>-DB0</td>
<td>2</td>
<td>2</td>
<td>27</td>
<td>NC [10]</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>3</td>
<td>28</td>
<td>GND</td>
</tr>
<tr>
<td>-DB1</td>
<td>4</td>
<td>4</td>
<td>29</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>5</td>
<td>30</td>
<td>GND</td>
</tr>
<tr>
<td>-DB2</td>
<td>6</td>
<td>6</td>
<td>31</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>7</td>
<td>32</td>
<td>-ATN</td>
</tr>
<tr>
<td>-DB3</td>
<td>8</td>
<td>8</td>
<td>33</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>9</td>
<td>9</td>
<td>34</td>
<td>GND</td>
</tr>
<tr>
<td>-DB4</td>
<td>10</td>
<td>10</td>
<td>35</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>11</td>
<td>11</td>
<td>36</td>
<td>-BSY</td>
</tr>
<tr>
<td>-DB5</td>
<td>12</td>
<td>12</td>
<td>37</td>
<td>NC [10]</td>
</tr>
<tr>
<td>GND</td>
<td>13</td>
<td>13</td>
<td>38</td>
<td>-ACK</td>
</tr>
<tr>
<td>-DB6</td>
<td>14</td>
<td>14</td>
<td>39</td>
<td>NC [10]</td>
</tr>
<tr>
<td>GND</td>
<td>15</td>
<td>15</td>
<td>40</td>
<td>-RST</td>
</tr>
<tr>
<td>-DB7</td>
<td>16</td>
<td>16</td>
<td>41</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>17</td>
<td>17</td>
<td>42</td>
<td>-MSG</td>
</tr>
<tr>
<td>-DBP</td>
<td>18</td>
<td>18</td>
<td>43</td>
<td>GND</td>
</tr>
<tr>
<td>GND</td>
<td>19</td>
<td>19</td>
<td>44</td>
<td>-SEL</td>
</tr>
<tr>
<td>GND</td>
<td>20</td>
<td>20</td>
<td>45</td>
<td>GND</td>
</tr>
<tr>
<td>GND [8]</td>
<td>21</td>
<td>21</td>
<td>46</td>
<td>-C/D</td>
</tr>
<tr>
<td>GND</td>
<td>22</td>
<td>22</td>
<td>47</td>
<td>GND</td>
</tr>
<tr>
<td>NC [10]</td>
<td>23</td>
<td>23</td>
<td>48</td>
<td>-REQ</td>
</tr>
<tr>
<td>GND</td>
<td>24</td>
<td>24</td>
<td>49</td>
<td>GND</td>
</tr>
<tr>
<td>NC [10]</td>
<td>25*</td>
<td>25</td>
<td>50</td>
<td>-I/O</td>
</tr>
</tbody>
</table>

CAUTION: Connector contact 25 must not be connected to ground at the host end or the drive end of the cable. If the I/O cable should accidentally be plugged in upside down, terminator power on pin 26 will be shorted to ground.

Notes []: See page following Table 11c
Table 11b: “W” models single ended I/O cable 68 conductor signal/contact assignments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GND</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>35 -DB12</td>
</tr>
<tr>
<td>GND</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>36 -DB13</td>
</tr>
<tr>
<td>GND</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>37 -DB14</td>
</tr>
<tr>
<td>GND</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>38 -DB15</td>
</tr>
<tr>
<td>GND</td>
<td>5</td>
<td>9</td>
<td>10</td>
<td>39 -DBP1</td>
</tr>
<tr>
<td>GND</td>
<td>6</td>
<td>11</td>
<td>12</td>
<td>40 -DB0</td>
</tr>
<tr>
<td>GND</td>
<td>7</td>
<td>13</td>
<td>14</td>
<td>41 -DB1</td>
</tr>
<tr>
<td>GND</td>
<td>8</td>
<td>15</td>
<td>16</td>
<td>42 -DB2</td>
</tr>
<tr>
<td>GND</td>
<td>9</td>
<td>17</td>
<td>18</td>
<td>43 -DB3</td>
</tr>
<tr>
<td>GND</td>
<td>10</td>
<td>19</td>
<td>20</td>
<td>44 -DB4</td>
</tr>
<tr>
<td>GND</td>
<td>11</td>
<td>21</td>
<td>22</td>
<td>45 -DB5</td>
</tr>
<tr>
<td>GND</td>
<td>12</td>
<td>23</td>
<td>24</td>
<td>46 -DB6</td>
</tr>
<tr>
<td>GND</td>
<td>13</td>
<td>25</td>
<td>26</td>
<td>47 -DB7</td>
</tr>
<tr>
<td>GND</td>
<td>14</td>
<td>27</td>
<td>28</td>
<td>48 -DBP</td>
</tr>
<tr>
<td>GND</td>
<td>15</td>
<td>29</td>
<td>30</td>
<td>49 GND</td>
</tr>
<tr>
<td>GND</td>
<td>16</td>
<td>31</td>
<td>32</td>
<td>50 GND</td>
</tr>
<tr>
<td>TermPwr</td>
<td>17</td>
<td>33</td>
<td>34</td>
<td>51 TermPwr</td>
</tr>
<tr>
<td>TermPwr</td>
<td>18</td>
<td>35</td>
<td>36</td>
<td>52 TermPwr</td>
</tr>
<tr>
<td>Reserved</td>
<td>19</td>
<td>37</td>
<td>38</td>
<td>53 Reserved</td>
</tr>
<tr>
<td>GND</td>
<td>20</td>
<td>39</td>
<td>40</td>
<td>54 GND</td>
</tr>
<tr>
<td>GND</td>
<td>21</td>
<td>41</td>
<td>42</td>
<td>55 -ATN</td>
</tr>
<tr>
<td>GND</td>
<td>22</td>
<td>43</td>
<td>44</td>
<td>56 GND</td>
</tr>
<tr>
<td>GND</td>
<td>23</td>
<td>45</td>
<td>46</td>
<td>57 -BSY</td>
</tr>
<tr>
<td>GND</td>
<td>24</td>
<td>47</td>
<td>48</td>
<td>58 -ACK</td>
</tr>
<tr>
<td>GND</td>
<td>25</td>
<td>49</td>
<td>50</td>
<td>59 -RST</td>
</tr>
<tr>
<td>GND</td>
<td>26</td>
<td>51</td>
<td>52</td>
<td>60 -MSG</td>
</tr>
<tr>
<td>GND</td>
<td>27</td>
<td>53</td>
<td>54</td>
<td>61 -SEL</td>
</tr>
<tr>
<td>GND</td>
<td>28</td>
<td>55</td>
<td>56</td>
<td>62 -C/D</td>
</tr>
<tr>
<td>GND</td>
<td>29</td>
<td>57</td>
<td>58</td>
<td>63 -REQ</td>
</tr>
<tr>
<td>GND</td>
<td>30</td>
<td>59</td>
<td>60</td>
<td>64 I/O</td>
</tr>
<tr>
<td>GND</td>
<td>31</td>
<td>61</td>
<td>62</td>
<td>65 -DB8</td>
</tr>
<tr>
<td>GND</td>
<td>32</td>
<td>63</td>
<td>64</td>
<td>66 -DB9</td>
</tr>
<tr>
<td>GND</td>
<td>33</td>
<td>65</td>
<td>66</td>
<td>67 -DB10</td>
</tr>
<tr>
<td>GND</td>
<td>34</td>
<td>67</td>
<td>68</td>
<td>68 -DB11</td>
</tr>
</tbody>
</table>

Notes []: See page following Table 11c
Table 11c: “WC” models single ended I/O, 80 conductor cable signal/contact assignments

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+12 V CHARGE</td>
<td>1</td>
<td>1 2</td>
<td>41</td>
<td>12 V GND</td>
</tr>
<tr>
<td>+12 V</td>
<td>2</td>
<td>3 4</td>
<td>42</td>
<td>12 V GND</td>
</tr>
<tr>
<td>+12 V</td>
<td>3</td>
<td>5 6</td>
<td>43</td>
<td>12 V GND</td>
</tr>
<tr>
<td>+12 V</td>
<td>4</td>
<td>7 8</td>
<td>44</td>
<td>MATED 1</td>
</tr>
<tr>
<td>NC [10]</td>
<td>5</td>
<td>9 10</td>
<td>45</td>
<td>NC [10]</td>
</tr>
<tr>
<td>-DB11</td>
<td>7</td>
<td>13 14</td>
<td>47</td>
<td>GND</td>
</tr>
<tr>
<td>-DB10</td>
<td>8</td>
<td>15 16</td>
<td>48</td>
<td>GND</td>
</tr>
<tr>
<td>-DB9</td>
<td>9</td>
<td>17 18</td>
<td>49</td>
<td>GND</td>
</tr>
<tr>
<td>-DB8</td>
<td>10</td>
<td>19 20</td>
<td>50</td>
<td>GND</td>
</tr>
<tr>
<td>-I/O</td>
<td>11</td>
<td>21 22</td>
<td>51</td>
<td>GND</td>
</tr>
<tr>
<td>-REQ</td>
<td>12</td>
<td>23 24</td>
<td>52</td>
<td>GND</td>
</tr>
<tr>
<td>-C/D</td>
<td>13</td>
<td>25 26</td>
<td>53</td>
<td>GND</td>
</tr>
<tr>
<td>-SEL</td>
<td>14</td>
<td>27 28</td>
<td>54</td>
<td>GND</td>
</tr>
<tr>
<td>-MSG</td>
<td>15</td>
<td>29 30</td>
<td>55</td>
<td>GND</td>
</tr>
<tr>
<td>-RST</td>
<td>16</td>
<td>31 32</td>
<td>56</td>
<td>GND</td>
</tr>
<tr>
<td>-ACK</td>
<td>17</td>
<td>33 34</td>
<td>57</td>
<td>GND</td>
</tr>
<tr>
<td>-BSY</td>
<td>18</td>
<td>35 36</td>
<td>58</td>
<td>GND</td>
</tr>
<tr>
<td>-ATN</td>
<td>19</td>
<td>37 38</td>
<td>59</td>
<td>GND</td>
</tr>
<tr>
<td>-DBP</td>
<td>20</td>
<td>39 40</td>
<td>60</td>
<td>GND</td>
</tr>
<tr>
<td>-DB7</td>
<td>21</td>
<td>41 42</td>
<td>61</td>
<td>GND</td>
</tr>
<tr>
<td>-DB6</td>
<td>22</td>
<td>43 44</td>
<td>62</td>
<td>GND</td>
</tr>
<tr>
<td>-DB5</td>
<td>23</td>
<td>45 46</td>
<td>63</td>
<td>GND</td>
</tr>
<tr>
<td>-DB4</td>
<td>24</td>
<td>47 48</td>
<td>64</td>
<td>GND</td>
</tr>
<tr>
<td>-DB3</td>
<td>25</td>
<td>49 50</td>
<td>65</td>
<td>GND</td>
</tr>
<tr>
<td>-DB2</td>
<td>26</td>
<td>51 52</td>
<td>66</td>
<td>GND</td>
</tr>
<tr>
<td>-DB1</td>
<td>27</td>
<td>53 54</td>
<td>67</td>
<td>GND</td>
</tr>
<tr>
<td>-DB0</td>
<td>28</td>
<td>55 56</td>
<td>68</td>
<td>GND</td>
</tr>
<tr>
<td>-DP1</td>
<td>29</td>
<td>57 58</td>
<td>69</td>
<td>GND</td>
</tr>
<tr>
<td>-DB15</td>
<td>30</td>
<td>59 60</td>
<td>70</td>
<td>GND</td>
</tr>
<tr>
<td>-DB14</td>
<td>31</td>
<td>61 62</td>
<td>71</td>
<td>GND</td>
</tr>
<tr>
<td>-DB13</td>
<td>32</td>
<td>63 64</td>
<td>72</td>
<td>GND</td>
</tr>
<tr>
<td>-DB12</td>
<td>33</td>
<td>65 66</td>
<td>73</td>
<td>GND</td>
</tr>
<tr>
<td>+5 V</td>
<td>34</td>
<td>67 68</td>
<td>74</td>
<td>MATED 2</td>
</tr>
<tr>
<td>+5 V</td>
<td>35</td>
<td>69 70</td>
<td>75</td>
<td>5 V GND</td>
</tr>
<tr>
<td>+5 V</td>
<td>36</td>
<td>71 72</td>
<td>76</td>
<td>5 V GND</td>
</tr>
<tr>
<td>SCSI ID [0] [7]</td>
<td>39</td>
<td>77 78</td>
<td>79</td>
<td>SCSI ID [1] [7] [9]</td>
</tr>
</tbody>
</table>

Notes []: See page following this Table
Notes [] for Tables 11a, 11b, and 11c.

[1] See Section 9.6.4.4 for detailed electrical characteristics of these signals.

[2] The conductor number refers to the conductor position when using 0.025-inch (0.635 mm) centerline flat ribbon cable. Other cables types may be used to implement equivalent contact assignments.

[3] Connector contacts are on 0.050 inch (1.27 mm) centers.

[6] Asserted by host to enable Delayed Motor Start option (motor starts at power on or after a delay of 12 seconds times drive ID). This and [3] above are mutually exclusive options.

[8] GND provides a means for differential devices to detect the presence of a single ended device on the bus.

[9] Signals [4] through [7] are used in place of installing jumpers and cables on option select connectors J2, J5 and J6. See also notes following Figure 7d.

[11] The conductor number refers to the conductor position when using 0.050 inch (1.27 mm) centerline flat ribbon cable. Other cable types may be used to implement equivalent contact assignments.

[12] Connector contacts are on 0.100 inch (2.54 mm) centers.
9.6.4.4 **Single-ended drivers/receivers**

For “N” models which use single-ended drivers and receivers, typical circuits are shown in Figure 12. Terminator circuits (Note [1]) are to be enabled (model N) only when the disc drive is first or last in the daisy-chain.

Transmitter characteristics

Single-ended drives use an ANSI SCSI compatible open collector single-ended driver. This driver is capable of sinking a current of 48 mA with a low level output voltage of 0.4 volt.

Receiver characteristics

Single-ended drives use an ANSI SCSI single-ended receiver with hysteresis gate or equivalent as a line receiver.

![Single-ended transmitters and receivers](image)

Notes.

[1] Part of active terminator circuits. Non-removable LSI terminators, enabled in the drive (model “N” and “W” models only) with jumper plug **TE** when it is first or last in the daisy-chain. Interface signals levels and logical sense at the drive I/O connector are defined as follows:

<table>
<thead>
<tr>
<th>Logic Level</th>
<th>Driver Output</th>
<th>Receiver Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEGATED (0)</td>
<td>$\geq 2.5 \text{ V}$: $< 5.25 \text{ V}$</td>
<td>$\geq 2.0 \text{ V}$: $\leq 5.25 \text{ V}$</td>
</tr>
<tr>
<td>ASSERTED (1)</td>
<td>$\leq 0.4 \text{ V}$: $> 0.0 \text{ V}$</td>
<td>$\leq 0.8 \text{ V}$: $\geq 0.0 \text{ V}$</td>
</tr>
</tbody>
</table>

The difference in the voltages between input and output signals is due to the losses in the cable.

[2] ANSI SCSI compatible circuits

[3] Total interface cable length should not exceed that specified in Section 9.6.3.1.

[4] Source of drive terminator power is an active circuit which has an input source voltage selected by jumper plug **TP**. See Figure 7d. Applies to “N” and “W” models.
9.7 Terminator requirements

Internal disc drive I/O termination (provided only in model “N” and “W” drives) consists of active circuits in an LSI module that is permanently mounted on the PCB. All single initiator/single target (non-daisy-chain) applications require that the Initiator and disc drive be terminated. Daisy-chain applications require that only the units at each end of the daisy-chain be terminated. All other peripherals on the chain must not be terminated. (See Figure 10).

Note. Remove drive terminator enabling jumper TE (see Figure 7d) where terminators are not required. Removal of terminator power source selection jumper TP (see Figure 7d) does not disconnect the terminator resistors from the circuit.

It is highly recommended that ANSI SCSI-2 Standard’s Alternative 2 termination (active termination) be used for applications with single-ended (“N”, “W” and “WC” models), especially if the bus will be operated at transfer rates above 5 Mbytes/sec. The “N” and “W” models provides on-board active termination that can be disabled by removal of the enable jumper TE (see Figure 7b).

Note. ACTIVE TERMINATORS ARE HIGHLY RECOMMENDED FOR USE IN THE DAISY-CHAIN AS DESCRIBED ABOVE. ACTIVE AND PASSIVE TERMINATORS SHOULD NOT BE MIXED ON THE SAME SCSI BUS.

“WC” models do not have terminators on the PCB. The user, systems integrator or host equipment manufacturer must provide a terminator arrangement external to the drive.

9.8 Terminator power

The drive may be configured to accept terminator power from pin 26 of the SCSI bus (on “N” and “W” models), to supply power to the SCSI bus or to provide terminator power for internal termination circuits from the drive power connector. See Figure 7d. The drive can provide power both to its own terminators and to the SCSI bus terminator power line (Pin 26) if both “TP” jumpers are on.

SCSI devices providing terminator power (TERMPWR) shall have the following characteristics:

8-bit SCSI
- V TERM = 4.25 V to 5.25 V
- 800 mA min source drive capability
- 1.0 A maximum

16-bit SCSI
- V TERM = 4.25 V to 5.25 V
- 1500 mA min source drive capability
- 3.0 A maximum

The “WC” model drives cannot furnish terminator power, because no conductors in the 80 pin I/O connector are devoted to terminator power.
9.9 Disc drive SCSI timing

Table 12: Disc drive SCSI timing

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Target Select Time (no Arbitration)</td>
<td>T00</td>
<td>N/A</td>
<td><1 µs</td>
</tr>
<tr>
<td>Target Select Time (with Arbitration)</td>
<td>T01</td>
<td>4.5-1,2</td>
<td>1.93 µs</td>
</tr>
<tr>
<td>Target Select to Command</td>
<td>T02</td>
<td>4.5-1</td>
<td>3.77 µs</td>
</tr>
<tr>
<td>Target Select to MSG Out</td>
<td>T03</td>
<td>4.5-2</td>
<td>1.57 µs</td>
</tr>
<tr>
<td>Identify MSG to Command</td>
<td>T04</td>
<td>4.5-3</td>
<td>3.36 µs</td>
</tr>
<tr>
<td>Command to Status</td>
<td>T05</td>
<td>4.5-5</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Command to Data (para. In)</td>
<td>T06</td>
<td>4.5-9</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Command to Data (para. Out)</td>
<td>T07</td>
<td>4.5-10</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Command to Data (Write to Data Buffer)</td>
<td>T08</td>
<td>4.5-10</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Command to Disconnect MSG</td>
<td>T09</td>
<td>4.5-6</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Disconnect MSG to Bus Free</td>
<td>T10</td>
<td>4.5-6,14</td>
<td>0.52 µs</td>
</tr>
<tr>
<td>Disconnect to Arbitration (for Reselect)</td>
<td>T11</td>
<td>4.5-6</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>This measures disconnected CMD overhead.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target win Arbitration (for Reselect)</td>
<td>T12</td>
<td>4.5-7</td>
<td>3.00 µs</td>
</tr>
<tr>
<td>Arbitration to Reselect</td>
<td>T13</td>
<td>4.5-7</td>
<td>1.60 µs</td>
</tr>
<tr>
<td>Reselect to Identify MSG In</td>
<td>T14</td>
<td>4.5-7</td>
<td>1.39 µs</td>
</tr>
<tr>
<td>Reselect Identify MSG to Status</td>
<td>T15</td>
<td>4.5-8</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Reselect Identify MSG to Data (media)</td>
<td>T16</td>
<td>4.5-11</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Data to Status</td>
<td>T17</td>
<td>4.5-15</td>
<td>Command Dependent</td>
</tr>
<tr>
<td>Status to Command Complete MSG</td>
<td>T18</td>
<td>4.5-5,8,15</td>
<td>0.98 µs</td>
</tr>
<tr>
<td>Command Complete MSG to Bus Free</td>
<td>T19</td>
<td>4.5-5,8,15</td>
<td>0.51 µs</td>
</tr>
<tr>
<td>Data to Save Data Pointer MSG</td>
<td>T20</td>
<td>4.5-14</td>
<td>4.00 µs</td>
</tr>
<tr>
<td>Save Data Pointer MSG to Disconnect MSG</td>
<td>T21</td>
<td>4.5-14</td>
<td>0.79 µs</td>
</tr>
<tr>
<td>Command Byte Transfer</td>
<td>T22</td>
<td>4.5-4</td>
<td>0.04 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 2 of 6)</td>
<td>T23.6.2</td>
<td>4.5-4</td>
<td>0.58 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 3 of 6)</td>
<td>T23.6.3</td>
<td>4.5-4</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 4 of 6)</td>
<td>T23.6.4</td>
<td>4.5-4</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 5 of 6)</td>
<td>T23.6.5</td>
<td>4.5-4</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 6 of 6)</td>
<td>T23.6.6</td>
<td>4.5-4</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 2 of 10)</td>
<td>T23.10.2</td>
<td>4.5-4</td>
<td>0.59 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 3 of 10)</td>
<td>T23.10.3</td>
<td>4.5-4</td>
<td>0.11 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 4 of 10)</td>
<td>T23.10.4</td>
<td>4.5-4</td>
<td>0.12 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 5 of 10)</td>
<td>T23.10.5</td>
<td>4.5-4</td>
<td>0.11 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 6 of 10)</td>
<td>T23.10.6</td>
<td>4.5-4</td>
<td>0.11 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 7 of 10)</td>
<td>T23.10.7</td>
<td>4.5-4</td>
<td>0.13 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 8 of 10)</td>
<td>T23.10.8</td>
<td>4.5-4</td>
<td>0.12 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 9 of 10)</td>
<td>T23.10.9</td>
<td>4.5-4</td>
<td>0.12 µs ±1 µs</td>
</tr>
<tr>
<td>Next CDB Byte Access (Byte 10 of 10)</td>
<td>T23.10.10</td>
<td>4.5-4</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Data In Byte Transfer (parameter)</td>
<td>T24</td>
<td>4.5-12</td>
<td>0.04 µs</td>
</tr>
</tbody>
</table>
Synchronous Data Transfer Characteristics:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Out Byte Transfer (parameter)</td>
<td>T25</td>
<td>4.5-13</td>
<td>0.04 µs</td>
</tr>
<tr>
<td>Next Data In Byte Access (parameter)</td>
<td>T26</td>
<td>4.5-12</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Next Data Out Byte Access (parameter)</td>
<td>T27</td>
<td>4.5-13</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Data In Byte Transfer (media) [2]</td>
<td>T28</td>
<td>4.5-12</td>
<td>0.04 µs</td>
</tr>
<tr>
<td>Data Out Byte Transfer (media) [2]</td>
<td>T29</td>
<td>4.5-13</td>
<td>0.04 µs</td>
</tr>
<tr>
<td>Next Data In Byte access (media) [2]</td>
<td>T30</td>
<td>4.5-12</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>Next Data Out Byte access (media) [2]</td>
<td>T31</td>
<td>4.5-13</td>
<td>0.12 µs</td>
</tr>
<tr>
<td>MSG IN Byte Transfer</td>
<td>T32</td>
<td>4.5-5,7,8,14,15</td>
<td>0.04 µs</td>
</tr>
<tr>
<td>MSG OUT Byte Transfer</td>
<td>T33</td>
<td>4.5-2</td>
<td>0.04 µs</td>
</tr>
<tr>
<td>STATUS Byte Transfer</td>
<td>T34</td>
<td>4.5-5,8,15</td>
<td>0.04 µs</td>
</tr>
</tbody>
</table>

Notes.

[1] See SCSI-2 Interface Manual P/N 77738479 (called Volume 2), Section 4.5

[2] Maximum SCSI asynchronous interface transfer rate is given in Section 4.2.3.

[3] Synchronous Transfer Period is determined by negotiations between an Initiator and a Drive. The Drive is capable of setting periods as given in Section 9.5. See also Sections 3.1.5.2 and 3.5.3.2 of the SCSI-2 Interface Product Manual (P/N 77738479) for a description of synchronous data transfer operation.

General timing diagrams for SCSI interface operation are shown in the SCSI-2 Interface Product Manual P/N 77738479, Section 4.5. The specific timing values that apply to this drive are listed in Table 12.
10.0 Technical support service

Seagate Technology provides technical support literature and diagnostic utilities to Authorized Distributors. Please contact your dealer for technical support and installation troubleshooting. Product Technical Support is available for all Seagate products by calling the SeaFAX™, SeaFONE™, SeaTDD™ or SeaBOARD™ services. These are toll calls.

SeaFAX number: United States 408/438-2620 England 44-62-847-7080

You can use a touch-tone telephone to access Seagate’s automated FAX delivery system and select technical support information by return FAX. This service is available 24 hours a day, 7 days a week.

Seagate Technical Support FAX: 408/438-8137

You can FAX specific questions or comments to Seagate technical support specialists 24 hours daily. Responses are FAXed between 8:00 a.m. and 5:00 p.m. (Pacific time), Monday through Friday.

SeaFone telephone number: 408/438-8222

The enhanced phone system provides recorded technical information on selected Seagate products while you are on hold. Technical support specialists are available to answer questions from 8:00 AM to 5:00 PM PST, Monday through Friday. Recordings are accessible 24 hours a day, 7 days a week.

SeaTDD telephone number: 408/438-5382

TDD is a Telecommunication Device for the Deaf where two people can communicate using a keyboard that is connected to the phone line. A TDD device is required to access this service. This service is available from 8:00 AM to 5:00 PM PST, Monday through Friday.

SeaBOARD service:

The Seagate Technical Support Bulletin Board System (BBS) is available 24 hours a day, 7 days a week. A modem is required to access this service. Model required. (300–9600 baud, 8-N-1). This is a toll call.

With this service you can access:
- Specifications and jumper configurations for all Seagate products.
- Reprints of Seagate documentation.
- A directory of information and helpful utilities that you can download to your own computer.

<table>
<thead>
<tr>
<th>BBS Location</th>
<th>Modem Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA, Mexico, Latin America</td>
<td>408/438-8771</td>
</tr>
<tr>
<td>England</td>
<td>44-62-847-8011</td>
</tr>
<tr>
<td>France</td>
<td>33-1-40-67-1034</td>
</tr>
<tr>
<td>German</td>
<td>49-89-140-9331</td>
</tr>
<tr>
<td>Singapore</td>
<td>65-292-6973</td>
</tr>
<tr>
<td>Australia</td>
<td>61-2-756-2359</td>
</tr>
<tr>
<td>Korea</td>
<td>82-2-556-7294</td>
</tr>
<tr>
<td>Thailand</td>
<td>662-531-8111</td>
</tr>
</tbody>
</table>

CompuServe:

Online technical support for Seagate Products is available on CompuServe. This includes an extensive question and answer message base, utilities downloadable, and documentation files in Adobe™ Acrobat™ format which you can download and view from your own computer. Type “Go Seagate” to access the Seagate technical support forum.
Index

Symbols
+5 and +12 volt supplies 19

Numerics
12 volt current 19
50 conductor connector 53
50 conductor flat cable 52
50 pin connector 54, 55
68 conductor connector 53
68 conductor flat cable 52
68 pin connector 54
80 conductor connector 53
80 conductor interface 53
80 pin connector option 52
80 pin I/O connector 63

A
AC power 19
access time 9, 11
accessories 8
active circuit 63
activity indicator 61
actuator 5, 7, 38
adapter accessory frame kit 8
adaptive servo calibration 7, 20
address 11
addressed track 16
air circulation 38
air cleanliness 25
air flow 21, 38
 suggested 39
air inlet 38
altitude 23
altitude and atmospheric pressure 21
ambient 21
ambient temperature 16, 21, 38
ANSI SCSI-2 5
ANSI SCSI-3 5
arbitration priority 54
asynchronous 10
asynchronous interface transfer rate 65
audible noise 3, 7
automatic retry 15
automatic shipping lock 5
average idle current 19
average latency 7
average rotational latency 9, 10

B
background processing 7
BBS 67
benign atmosphere 16
buffer 11, 12
buffer segment 11, 12
buffer segmentation 12
buffer-full 11
buffer-full ratio 11
bulkhead connector 52
bulkhead mounted connector 53
bulletin board system
 technical support 67
bus device reset message 45
bus timing 49
bytes per sector 43
bytes/surface 9
bytes/track 9

C
cabinet cooling 38
cable 49
 shielded 52
 unshielded 52
cable end 53
cable length 52, 62
cache 11, 12
cache buffer 7
cache miss 11
cache mode 11
cache operation 11
cache operation hit 12
cache segment 12
caching write data 12
calibration 20
Canadian Department of Communications 3
capacities 8
case temperature 21
changeable bit 46
changeable value 45
characteristic impedance 52
check condition 45
class B limit 3
command 11, 42, 43
command descriptor block (CDB) 11
command queuing 7
CompuServe, technical support on 67
condensation 21, 22
donducted noise immunity 19
conductor size 52
connect/disconnect 11
connector 49
connector contact 61
connector key 53
consecutive read operation 13
contiguous blocks of data 13
continuous vibration 25
controller 11
controller overhead 9
controller self test 20
cooling 38
cooling air 21
cost 52
current 20, 62
operating 19
current limiting 20
current profile 20
current requirements 19
current value 45, 46
customer unique 41, 48
cylinder boundary 12

daisy-chain 20, 52, 53, 54, 62, 63
80 conductor 53
terminating 52
data area 20
data buffer 7, 10
data correction 15
by ECC 29
data transfer period 49
data transfer protocol 7
data transfer rate 10
DC cable and connector 49
DC current 52
DC power 11, 15, 21, 37, 49
DC power carrying conductor 53
DC power connector 49, 50, 51
DC power requirements 19
DC power source 53
dedicated landing zone 5
default 36, 37
default mode parameter 31
default value 45, 46, 47
defect/error management 29
delayed motor start option 19, 61
delayed start 37
depot repair 16
depot repair philosophy 16
diagnostics 20
differential I/O circuit 52
differential I/O model 52
differential interface circuit 52
dimensions 26
disable read ahead 12
disc access 11
disc drive
termination 63
disc media 10
disc rotational speed 9
disconnect/reconnect 12
control 11
specification 12
discontinuance 52
discontinuity (DISC) bit 12
DRA bit 12
drive 25
drive activity 8, 61
drive activity LED 36
drive capacity 9
drive configuration 36
drive default mode parameter 31
drive defects list track 29
drive failure 16
drive firmware 45
drive I/O connector 62
drive ID 31, 36
drive ID select 32, 33, 34
drive ID select jumper connector 31
drive ID/option select header 31
drive interface connector 53
drive internal 20
drive internal defects and errors 29
drive malfunction 16
drive mounting 26, 38
constraints 15
drive option select header 35
drive orientation 11, 38
drive power 31
drive reset 36
drive SCSI timing 64
drive select header 49
drive spindle 37
drive transfer 12
drive volume 31
drive warranty 16
driver and receiver 52
duty cycle 21
dynamic spindle brake 7

electrical characteristic 61
electrical characteristics 49
electromagnetic compatibility 3
electromagnetic interference (EMI) 15
electromagnetic susceptibility 25
embedded servo 7
EMI requirements 3
environment 38
environmental control 25
environmental interference 15
environmental limits 21
environmental requirements 15
EPROM 45
equipment malfunction 15
error 15
error correcting code 7
error management system 29
error rate 15
error rate calculation 15
error recovery control bit 45
ETF defect list 29
EVPD bit 44
execution time 11
extended messages 41
extended sense 16

F
fast SCSI transfer rate 52
fault status 15
FAX delivery system 67
FCC
 rules and regulations 3
field repair 16
firmware 45
firmware release number 44
fixed disc 5
flat ribbon cable 61
flaw reallocation 10
format 43
format command 10
format operation 29
format unit command 29
formatted 8
formatting 31
front panel 8, 26
 kit 8
front panel LED 61
FSW function 46, 47

G
gradient 21, 22
ground 58
ground return 19
grounding 38

H
hard reset 45
hardware error 16
Hawk 2XL model numbers 1
HDA 5, 16, 21, 38
 temperature 21
head and disc assembly. See HDA
heads 5, 20
heat source 38
high level format 31
host 11, 12, 13, 29, 36, 37, 43, 52, 54, 58
host adapter 31
 adapter/initiator 54
host backplane wiring 52
host equipment 38, 52, 53
 DC power 53
 manufacturer 31
host I/O signal 31
host system 31
host system malfunction 15
host/drive operational interface 15
hot plug 7
humidity 21, 22

I
I/O cable 58
I/O connector 36, 49, 52
I/O line 37
I/O termination 63
identified defect 29
idle condition 21
impedance match/mismatch 52
information
 downloadable 67
initiator
 termination 63
inquiry command 44
inquiry data 44
inquiry vital product data 44
installation 31
installation guide 4, 8
installation instructions 31
instantaneous current peak 19
integrated SCSI controller 7
interface cable length 54
interface requirements 41
interface timing 15
interleave 7
internal data rate 9

J
J1-auxiliary 31
jumper 8, 31, 36, 37, 61
jumper configuration
 technical support 67
jumper function description 37
jumper header 36
jumper plug 31
jumper plug TE 62
jumper plug TP 62
jumper plug type 31

L
landing zone 7, 20
LB 12
LED 8
line data transfer rate 52
logical 12
logical block 11, 12
logical characteristics 49
logical segment (mode select page 08h) 11
low level format 31
LSI module 63

M
mating connector 53
mating flat cable connector 53
maximum case temperature 21
maximum current requirements 20
maximum operating current 19
maximum starting current 19
ME jumper 37
mean time between failure. See MTBF
media 5, 7, 45
media defect 15
media defect induced error 15
medium error 16
message protocol 49
message protocol system 29
messages
 SCSI interface 41
miscellaneous features 48
mode page 01 45
mode page 02h 11
mode page 08h 11
mode parameter 45
 page 08h 12
mode select command 11, 12, 45
mode select page 08h 12
mode sense command 45, 46
mode sense command page 08h 12
mode sense data 45, 46, 47
mode sense value 45
model number table 1
motor current regulator 19
motor start command 11
motor start delay option 20, 61
motor start option 11, 19, 61
mounting configuration 26
mounting configuration dimensions 26, 27, 28
mounting constraints 15, 38
mounting point 38
mounting surface 38
mounting surface distortion 38
mounting surface stiffness 38
MTBF 7, 15, 16, 21
multiple segment 12
multi-segmented cache control 11

N
noise 19
 audible 3, 7
nominal voltage 21
non-operating 22, 23, 25
 temperature 21
non-operating vibration 25
nonshielded 50 conductor connector 53
nonshielded 68 conductor connector 53
nonshielded cable connector 52
nonshielded flat cable 52
number of loads 52

O
office environment 25
operating 22, 23, 25
operating current 19
operating environment 16
operating option 31
operating parameter 45
operator intervention 15
option jumper 31
option jumper location 31
option select header 49
option select jumper 31
options 8
orientation 11, 23, 38
out-of-plane deflection 38
out-of-plane distortion 38
output voltage 62
overhead time 10

P
package size 23
package test specification 4
packaged 23
parity 37
parity checking 37
parity error 37
partition or logical drive 31
PCB 1, 16, 31, 36, 37, 38, 45, 49, 52, 53
 temperature 21
PCB circuit run 52
PD jumper 37
peak starting current 19
performance characteristics 9
performance degradation 23
peripheral I/O cable 20
physical buffer space 11
physical characteristics 49
physical damage 25
physical interface 49, 50, 51
physically contiguous blocks of data 13
power 19, 20, 37, 49, 63
power connector 19, 63
power control switch 11
power dissipation 21
power distribution 3
power requirements 19
power sequencing 20
power supply voltage 15
power-carrying conductor 53
power-on 31, 36, 61
power-on operating hours 16
power-on reset 45
power-up 19, 20, 37
power-up hours 16
prefetch 11, 12
prefetch (read look-ahead) 11, 13
prefetch ceiling field 12
prefetch data 12
prefetch field 12
prefetch hit 12, 13
prefetch mode 11
prefetch of contiguous blocks 13
prefetch operation 11, 12
prefetch segmented cache control 11
preventive maintenance 15, 16
printed circuit board. See PCB
Product 16
product data page 44
Product warranty 16

R
radio interference regulations 3
random seek 19
random write/read 21
read 12
read caching 12
read command 11, 12
read data 11
read error 15
read error rate 15, 29
read operation 11
read power dissipation 21
read/write head 9
ready 45
receive diagnostic results 29
recommended mounting 24
recoverable seek error 16
recovered error 16
reference documents 4
regulation 19
relative humidity 22
reliability 7
reliability and service 16
reliability specifications 15
remote ID selection 36
remote switch 31
repair facility 16
REQ/ACK offset 49
request sense command 29
request sense information 16
reseek 16
resonance 23
retrieved data 11
right angle connector 53
ROM release number 44

S
safe power transmission 53
safety 3
saved value 45, 46
SCAM 7
SCSI
commands 42, 43
format commands 15
interface data transfer rate 10
messages 41
SCSI bus 31, 52, 63
SCSI bus cable 31
SCSI bus condition 48
SCSI bus I/O cable 37
SCSI bus ID 61
SCSI bus phase sequence 48
SCSI command 29
SCSI device 52
SCSI I/O connector 50, 51
SCSI I/O interface 49
SCSI I/O termination 19
SCSI ID 31, 37
SCSI interface 11, 15, 52, 65
SCSI interface cable 52
SCSI interface commands supported 42
SCSI interface connector 49
SCSI Interface Manual 3, 4
SCSI systems error 29
SCSI systems error consideration 29
SCSI systems error management 29
SCSI-2/SCSI-3 46
SCSI-2/SCSI-3 mode 42
Seagate documentation 67
Seagate support service 31
sector 12
sector interleave 10
sector size 8, 10
sector transfer 11
seek error 15, 16
seek positioning error 16
segment 11, 12
segment number 12
segmentation 12
self-contained 12
sense key 16
sequential read operations 13
service
life 16
philosophy 16
tools 16
service life 15, 16
servo data 5
servo head 9
servo RAM release number 44
shielded cable 52
shielding 3
shielding effectiveness 52
shipping container 21
shipping lock 5
shock 23
and vibration 23
shock mount 38
signal 49
signal ground 38
signal reflection 52
single ended I/O
signal/contact assignment
50 conductor 58
68 conductor 59
80 conductor 60
single conductor 60
single unit shipping pack 8
single-ended drive 62
single-ended I/O 37, 52
single-ended interface circuit 21, 52
single-ended SCSI driver 7, 52, 62
single-ended SCSI receiver 7, 52, 62
site installation 16
software interleave 13
source voltage 62
spare cylinder 8
spare part 16
spare sector 8
spindle 20
spindle startup 37
standard day 21
standards 3
start motor command 19
start unit command 37
start/stop time 11
status 29
stop spindle 11
stop time 11
storage capacity 29
straight-in connector 53
strict bit in mode page 00h 12
stub length 52
supply power 63
supply voltage 19
synchronous data transfer 49
synchronous data transfer operation 65
synchronous data transfer period 49
synchronous transfer period 65
synchronous transfer rate 10
system chassis 38
system operation 52
system power supply 20
system recovery procedures 15

T
TDD 67
technical support information 67
 bulletin board system 67
 forum on CompuServe 67
telecommunication device for the deaf 67
temperature 11, 21, 38
 ambient 21
 case 21
 gradient 21
 maximum case 21
 non-operating 21
 PCB and HDA 21
 regulation 3
 typical case 21
 See also cooling
terminated 20
termination 20
active 63
disc drive 63
initiator 63
terminator 31, 37, 49, 52, 54, 62, 63
 active 63
 passive 63
terminator circuit 37, 62
terminator enable jumper TE 31, 52, 54, 63
terminator power 31, 37, 58, 62, 63
 source selection jumper TP 52, 63
terminator requirements 31, 63
TERMPWR. See terminator power
timing value 65
total cable length 52
TP jumper 37, 63
tracks/inch 9
tracks/surface, total 9
transfer period 49
transfer rate 52
twisted pair ribbon cable 52
typical access time 11
typical case temperature 21

U
unformatted 8
unrecoverable condition 15
unrecoverable error 15
unrecoverable seek error 16
Unrecoverable write error 15
unshielded cable 52
unshielded flat cable 52
utilities
 downloadable 67

V
vibration 23, 25
vital product data 44
voice coil actuator 7
volatile memory 45
voltage 11, 19
voltage margin 11

W
wall/bracket mounted connector 52
warranty 7
wet bulb temperature 21
wide data bus 44
WP jumper 37
wrap-around 12
write caching 12
write command 12
write data logical block 12
write error 15
write operation 12
write protect 37
Z
zoned bit recording (ZBR) 7