Perspective

13 10月, 2025

AI

AIへの投資を最大限に活用するために、企業はどのような準備をするべきでしょうか。

Perspective

how-should-enterprises-prepare-to-get-the-most-out-of-their-ai-investments-thumbnail-1440x900

大量のデータなくしてAIの成功はあり得ません。

そして、大量のデータセットは、大容量の効率的なデータ・ストレージなしには存在しません。

データがAIを支え、大容量ハードディスク・ドライブがデータを支えます。

これらのインサイトは、調査会社Recon Analyticsが2025年に実施した調査で明らかになりました。

Seagateが委託したこの世界規模の調査では、1,062人から回答を得ました。回答者は、米国、中国、イギリス、韓国、シンガポール、フランス、インド、日本、台湾、ドイツに拠点を置き、年間売上高が1,000万ドル超で、現在のストレージ使用量が50テラバイトを超え、AIを導入済みまたは今後3年間で導入を計画している企業において、ストレージ・インフラストラクチャに従事する、ITストレージの購入者および意思決定者です。

この調査では、AI導入がインフラの優先順位、データ保持、データ管理に与える影響に焦点を当てています。今回の結果では、今後3年間でAIがインフラのニーズにどのような影響を与えるかが明らかになりました。

調査の概要

今回の調査では、何よりもまず、AIの導入がデータ・ストレージの需要を2028年まで指数関数的に増加させることが示されました。

  • クラウド・ストレージを主に使用している企業の回答者の61%が、今後3年間で自社のクラウドベースのストレージを100%以上、つまり2倍以上に増やす必要があると回答しました。

図1.AIデータ管理に主にクラウド・ストレージを使用している企業の回答者の61%が、ストレージ要件が100%以上増加すると予想している。

AIアプリケーションにより、かつてないほどのデータ生成が促進されるため、組織が保存するデータが増えるほど、AIが期待通りに動作しているかどうかを検証できるようになります。トレーニング・データセット、モデルのチェックポイント、プロンプト、回答といった動作データにアクセスすることで、企業はアルゴリズムを精査してAIの意思決定の仕組みをより深く理解し、改善できます。そうした拡張性や効率性を欠くデータ・センターでは、AIの可能性を一部しか引き出せないでしょう。AI導入の成功には、膨大なデータセットを保存し検索する能力が極めて重要だからです。

AIの成功を左右するのは、ストレージの容量だけではありません。データの保持期間も重要です。

  • AIテクノロジーを導入している企業に勤務する回答者のうち90%が、データ保持期間が長くなるとAIの成果の質が向上すると考えています

図2.現在AIを使用している企業の90%が、より多くの履歴データを保持することでモデルの精度が向上すると考えている。

この調査結果は、データを長期間保持することと、信頼性の高いAIインサイトとの間に相関関係があることを示しています。これにはいくつかの要因があります。第一に、継続的な反復処理はAIアルゴリズムの動作に本質的に備わっています。コンテンツ出力はモデルにフィードバックされ、モデルの精度が向上し、新しいモデルが有効になります。未加工のデータセットと成果物は、今後の開発と新しいワークフローのソースになります。

データセットを長期間保持することは、企業の知的財産を保護するという、ビジネスにとって重要な他の機能にも役立ちます。モデルの元のデータセットとプロセスの「証跡」を保管し、必要に応じて(例えば法的プロセスの一環として)結果の説明を提供します。これらの「証跡」によってデータ・リネージが確立され、データの入力から出力に至る過程が明確に記録されます。データ・リネージにより、組織はデータセットの起源と使用方法を検証でき、AIモデルを正確なデータに依拠させることができるようになります。これにより、AIシステムを完全に監査できるようになり、規制遵守と内部説明責任の両方をサポートできます。

さらに、企業は、未来のアルゴリズムが過去のデータから発見する新しい価値あるインサイトを現時点では把握できないことを認識しているため、より多くのデータをより長期間保持するという選択をする可能性があります。データ保持期間が長くなると、現時点では未開発のAIモデルが過去のデータの処理できるようになります。これらの理由から、データ保持期間が長くなると、AIが提供できるビジネス価値が向上します。

関連する調査結果では、インフラストラクチャの意思決定者は、信頼の構築には長期間のデータ保持が欠かせないと考えています。信頼がなければ、AIのインサイトはほとんど価値を持ちません。

  • 現在AIを使用している企業の回答者の88%が、信頼できるAIの導入によって、より多くのデータを長期間保存する必要性が高まると考えています。

Seagateは、信頼できるAIを、信頼できる入力を使用し、信頼できるインサイトを生成するAIデータ・ワークフローおよびモデル、と定義しています。信頼できるAIを構築するには、基盤となるデータが以下の基準を満たしている必要があります。

  • 高い品質および精度
  • 明確な合法性、所有権、出どころ
  • 安全な保管と保護
  • アルゴリズムによって変換され、説明および追跡が可能
  • 一貫性と信頼性が確保されたデータ処理出力

図3.現在AIを使用している企業の回答者の88%が、信頼できるAIの導入によって、より多くのデータを長期間保存する必要性が高まると述べている。

拡張性の高いストレージ・インフラストラクチャがあれば、それらを信頼できるAIの基盤にし、AIシステムで使用する膨大なデータを適切に管理、保存、保護できます。

  • 信頼できるAIを構築する一環として、回答者の80%がチェックポイントの重要性を強調しています。

チェックポイント処理とは、AIモデルの学習中に、特定の短い間隔でAIモデルの状態を保存するプロセスです。AIモデルには、数分から数か月かかる反復的なプロセスを通じて、大規模なデータセットを用いてトレーニングが行われます。モデルの学習期間は、モデルの複雑さ、データセットの規模、利用可能な計算能力によって決まります。学習期間中は、モデルにデータが供給され、パラメーターが調整され、システムは処理する情報に基づいて結果を予測する方法を学習します。

チェックポイントは、トレーニング中の多くのポイントにおける、モデルのその時点での状態(データ、パラメーター、設定)のスナップショットのような役割を果たします。1分から数分ごとにストレージ・デバイスに保存されるスナップショットにより、開発者はモデルの進行記録を保持することが可能になり、予期せぬ中断による貴重な学習の損失を避けることができます。

調査によると、100PB以上のストレージを使用している企業は、毎日から毎週のペースでチェックポイントの保存とバックアップを行っており、その87%がこれらのチェックポイントをクラウドまたはHDDとSDDの組み合わせに保存しています。

ストレージ:AIを成功に導く秘密の推進要因

AIの導入に関する議論で良く取り上げられるテーマは、コンピューティングとエネルギーです。しかし、Recon Analyticsの調査では、ストレージが重要な推進要因として強調されています。

  • インフラストラクチャの購入者の視点では、データ・ストレージは、AIインフラストラクチャの中で、セキュリティに次いで2番目に重要な要素となりました。セキュリティとストレージに続くのは、重要度の順に、データ管理、ネットワーク容量、コンピューティング、規制、LLM実現性、エネルギーです。
  • 回答者の3分の2 (66%) が、ストレージをAIを実現する上位4つの要素の中で2番目に重要な要素とし、導入の障壁として4番目に重要な要素としました。

 図4.インフラストラクチャの意思決定者の66%が、AIを実現する上位4つの要素のうち、ストレージを2番目に重要な要素としている。また、AI導入における障壁として、ストレージを4番目に重要な要素としている。

Recon社の創設者兼主任アナリストであるロジャー・エントナー (Roger Entner) 氏は次のように述べました。

「この調査結果は、データ・ストレージに対する需要が今後急増することを示しており、ハードディスク・ドライブは明確な勝者です。調査対象となったビジネス・リーダーたちがこれからも多くのAI主導データをクラウドに保存する意向であることを考えると、クラウド・サービスは第2の成長の波に乗るのに有利な立場にいるようです」


AIから最大限の価値を引き出すには、企業は拡張性と効率性に優れたデータ・ストレージを用意する必要があります。直接であれクラウド・サービス経由であれ、AIがデータに依存するには、信頼できるAIのバックボーンとして、比類のない容量、コスト効率、持続可能性を提供するハードディスク・ドライブが必要になります。

 

関連トピック:

Innovation Artificial Intelligence